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Abstract— We propose Action-Oriented Semantic Maps
(AOSMs), a representation that enables a robot to acquire ob-
ject manipulation behaviors and semantic information about the
environment from a human teacher with a Mixed Reality Head-
Mounted Display (MR-HMD). AOSMs are a representation
that captures both: a) high-level object manipulation actions in
an object class’s local frame, and b) semantic representations
of objects in the robot’s global map that are grounded for
navigation. Humans can use a MR-HMD to teach the agent
the information necessary for planning object manipulation
and navigation actions by interacting with virtual 3D meshes
overlaid on the physical workspace. We demonstrate that our
system enables users to quickly and accurately teach a robot
the knowledge required to autonomously plan and execute three
household tasks: picking up a bottle and throwing it in the
trash, closing a sink faucet, and flipping a light switch off.

I. INTRODUCTION

A long-term goal of robotics is designing robots intelligent
enough to enter a person’s home and perform daily chores
for them. This requires the robot to learn specific behaviors
and semantic information that can only be acquired after
entering the home and interacting with the humans living
there. For example, there may be a trinket that the robot
has never encountered before, and the owner might want to
instruct the robot on how to handle the item (i.e., object
manipulation information), as well as directly specify where
the item should be kept (i.e., navigation information). To
approach this problem, one must consider two sub-problems:
a) the agent’s representation of object manipulation actions
and semantic information about the environment, and b)
the method with which an agent can learn this knowledge
from a teacher.

Semantic maps provide a representation sufficient for
navigating an environment [1, 2], but map information alone
is insufficient for enabling object manipulation. Conversely,
there are knowledge bases that store requisite object manip-
ulation information [3–7], but do not help with navigation
or grasping in novel orientations. Previous studies [8–10]
have shown that Mixed Reality (MR) interfaces are effective
for specifying navigation commands and programming ego-
centric robot behaviors. However, none of these works have
demonstrated the use of MR interfaces for teaching high-
level object manipulation actions, and semantic information
of the environment.

Our contribution is a system that enables humans to teach
robots both object manipulation actions—in a local object
frame of reference—and b) semantic information about ob-
jects in a global map. We use a Mixed Reality Head Mounted

Display (MR-HMD) to enable humans to teach a robot a
plannable representation of their environment. By plannable,
we mean structured representations that are searchable with
AI planning tools [11]. By teach, we mean having the human
explicitly provide information necessary for instantiating
our representation. Our representation, the Action-Oriented
Semantic Map (AOSM), enables robots to perform complex
object manipulation tasks that require navigation around an
environment. To test our system for building AOSMs, three
novice humans used our MR interface to teach a robot an
AOSM, allowing the robot to autonomously plan to navigate
to a bottle, pick it up, and throw it out. In addition, we report
the quantitative results of two expert users who demonstrated
the power of learning AOSMs via MR by also teaching a
robot to autonomously plan to flip a light switch off (Figure
1) and manipulate a sink faucet to the closed position. To
the best of our knowledge, this is the first work that presents
a learnable representation for planning manipulation and
navigation tasks on a robot via an MR interface.

II. RELATED WORK

Numerous previous works have combined low-level metric
maps with high-level topological and semantic information
[1, 12–17], but with a focus on navigational tasks. Various
works have made semantic map representations that use a
hybrid of metric, topological, and conceptual representations
[1], and incorporated human input to improve and teach
these representations for the purpose of navigation [12, 15,
16]. Most notably, Pronobis and Jensfelt [12]’s semantic
map representation has place appearance and geometry,
object information, topology, human input, segmentation,
conceptual maps, uncertain concepts, inferred properties, and
autonomously acquired concepts. However, Pronobis and
Jensfelt [12] do not learn object manipulation requisites,
such as grasp points, termination sets, and motor policy
representations, and only focus on information necessary for
effective localization and navigation.

Previous works have learned object representations that
do contain information that is used for object manipulation
planning [3–7], but do not consider learning semantic map
representations of their environment in the process. Object-
Action-Complexes (OACs) [3, 4], which consider objects
and action representations to be intertwined by capturing
interactions between objects and associated actions, allow
the agent to acquire object knowledge about the world
through predicting changes in the world via agent interaction.
While OACs provide a symbolic representation of sensor-



Fig. 1: Our MR system being used to generate an AOSM so the robot can flip a light switch. (1): Initially, the robot does
not know the location of the light switch, how to grasp it, nor how to turn it off. (2): A human using MR teaches the robot
the object’s global pose Γ, the “grasp” attribute, and the initiation and termination pose for the “turn off” action (highlighted
in orange).(3): The robot is now able to autonomously plan to navigate to the lights, motion plan to grasp the light switch,
and execute the policy to flip it off.

motor experience for objects, they do not have sufficient
information about the environment to generate maps for the
use of navigation. Beetz et al. [5] present an impressive
knowledge-base, KNOWROB2, which incorporates compo-
nents like perception, learning, and reasoning to achieve
complicated manipulation tasks like making a pizza. While
KNOWROB2 is able to learn what robot poses in a map of
the environment are useful for actions like suitable grasps, it
requires access to an “inner world” of the environment with
symbolically-annotated objects with the map, and does not
address how to learn such a detailed and accurate semantic
map representation of the environment. More importantly,
KNOWROB2 does not represent actions in local object
frames, which is crucial for leveraging the MR interface and
teacher input. Our proposed method helps the agent acquire
both the semantic map, and plannable representations for
manipulation from a human teacher by instead leveraging
the underlying virtual environment model of a MR-HMD
and representing actions within object frames.

MR-HMDs show great promise for facilitating human-
robot interaction, and have been used for communicating
robot motion trajectories [9, 18, 19] and specifying robot
commands [10]. Beyond their improvements to speed, ac-
curacy, and mental workload over baselines [9], MR-HMDs
also enable the human to share the same space as the robot
and interact with a virtual environment instead of having to
interact with the real, physical robot [8]. While projector-
based approaches are also a powerful tool for facilitating
human-robot interaction [20], they require structured envi-
ronments and are unable to highlight free 6D space because
they must project onto a surface, which is limiting in the case
where a human must teach spatial attributes (like a grasp
pose) for planning.

While some previous work has used MR-HMDs to have
robots learn from humans, it has only focused on simple
pick and place tasks, and not on using the MR interface

to learn requisite information needed for complex object
manipulation and navigation [8, 21]. Gadre et al. [8] designed
an MR interface to enable end-users to program robot
motions via waypoint specification for the purpose of pick
and place, and Krupke et al. [21] designed a MR interface
for a similar task, but instead manipulated virtual items in
the workspace to specify place locations. While these works
demonstrate the capability of learning with MR, they focus
on how such an interface compares to other modalities (like
2D monitor interfaces). We address the problem of acquiring
semantic maps and high-level action requisites that is needed
for navigation and complex object manipulation behaviors on
a robot from a human with a MR-HMD.

III. ACTION-ORIENTED SEMANTIC MAPS

We first formalize AOSMs by describing the object
classes, object instances, and object manipulation actions it
contains, which are all defined with a local frame. Next, we
illustrate the grounding of an object’s semantic information
to a global frame of reference. Lastly, we describe our
method of using MR to build an AOSM from a human
trainer.

A. Defining Action-Oriented Semantic Maps

An Action-Oriented Semantic Map is a tuple AOSM =
〈C,O,M,A〉, where C is a set of object classes; O is a set
of objects instantiated from C, where we define instantiation
as assigning all attributes of a class to values representing
a real-world object; M is a 2D occupancy grid of the
environment; and A is a set of high-level object-specific
actions parameterized over objects in O.

Each high-level action a ∈ A is akin to an option [22].
Given an object from o ∈ O and a high-level action a, a
“policy”, an “initiation set”, and a “termination set” for the
option is specified. In the next subsection we will describe
using MR to acquire each of these components in detail.



Fig. 2: The perspective of a user with our MR interface (all visualizations here are from the actual interface). Left: A
closeup image of a user grounding the global pose Γ of the light switch using our MR interface. Middle: A user specifying
the terminating pose for the “throw away” action of the bottle object, with the annotated grasp pose visualized as a white
robot gripper. Right: An image of the virtual robot overlaid on top of the real robot while calibrating the MR-HMD’s map
with the robot’s map M . The text “CALIBRATE” indicates to the user what information they are specifying.

Each class within C is constructed with a set of attributes
α, a 6D local frame Λ, a global pose Γ, and a kinematic mesh
model τ . The 6D (position and orientation) local frame Λ is
necessary to define spatial attributes for high-level actions
with respect to an object, regardless of the global pose Γ.
The model τ is defined in the local frame with respect to Λ.

The 3D kinematic mesh model of each object class, τ , is
specified with respect to Λ. The purpose of the 3D mesh
is twofold. Firstly, it provides an interface for the teachers
to manipulate and specify the local coordinate frame of an
object so that the skill specification is intuitive. Secondly, it
allows a manipulable interface to the object in MR allowing
the trainer to visualize and manipulate a virtual object, which
is the typical mode of interaction with an object in MR.

Each class has a set of attributes α, akin to class at-
tributes in Object-Oriented Markov Decision Processes [23].
Attributes are used to represent information required for
planning object manipulation behaviors. Spatial attributes,
like “grasp”, which defines how the object should be grasped
with respect to τ , are specified with respect to Λ. In our
experiments, the only attribute we have for our classes is
“grasp”, but other complex domains require more attributes
for planning.

Once objects are instantiated, they have a global pose Γ
in the map, and the agent knows where the object is and can
navigate to it. Moreover, a high-level action a is defined with
respect to the local frame Λ of the object class c. Specifically,
the policy, initiation set and termination set of a high-level
action a are all defined in the object class’s local frame.
This allows transfer of learned high-level actions to different
objects within the same class and to different poses in the
global frame, enabling the robot to reproduce and generalize
the learned skill later when executing a plan.

Whenever an object is instantiated, Γ is grounded to M ,
and τ is rendered by the MR-HMD based on Γ. Γ is the
pose of the local frame’s origin with respect to M ’s origin.
The purpose of the global pose Γ is so that information
defined with the local frame Λ for an object is now grounded
within the map M , enabling the robot to know where in
the environment it should navigate to in order to perform
object manipulation behaviors. The purpose of rendering τ

in MR is so that the teacher can specify Γ by dragging the
virtual object model, and directly view whether Γ is correctly
specified (i.e: if the virtual τ is overlaid on top of the real
object).

B. Instantiating AOSMs with Mixed Reality
In order to ground the poses of the virtual items to our

semantic map, the map maintained by the MR-HMD must be
linked to the robot map M . MR-HMDs already have a built-
in capability to make a 3D mesh model of the environment
for mapping, which is used for localization. However, there
is no inherent link between the MR-HMD’s map and the
robot map M , which is required to use MR to specify
an object’s global pose Γ. To resolve this issue, a static
transform that defines how to convert global poses in the
virtual environment maintained by the MR-HMD to poses
in the robot’s map must first be defined (Figure 2). Our
method of performing this calibration using MR is explained
in Section IV.

After calibrating the MR-HMD and the robot map, the
user can teach the robot object manipulation and semantic
information of the environment (as described in Section IV-
B). The user is presented with a list of object classes C
from the AOSM. When the user selects a class, a virtual
representation of the object’s mesh τ is visualized in front
of the user as a 3D mesh (Figure 2), and an interaction
process is initiated, where the user supplies each of the
necessary attribute values within the object’s local frame Λ.
For example, in case of the “grasp” attribute, the user is
presented with a visualization of the object’s mesh τ along
with a virtual model of the robot’s end effector (Figure 2).
The user is then able to pose the virtual end effector to
grasp the virtual object mesh τ . Users are able to supply
manipulation information using the high-level actions for an
object by filling in the parameters. The users first select an
object to add an high-level action to, and then manipulate
a virtual representation of the object’s mesh τ into the
desired initiation and termination poses. Because τ is an
articulated 3D mesh model, users can specify the initiation
and termination poses by selecting a link with the controller,
and then manipulate it with their controller to the desired
pose. For the purposes of our MR interface implementation,



these initiation and termination poses were in terms of the
mobile-manipulator’s end effector so that our system could
check when these poses were reached. This process allows
users to not have to specify any low-level manipulation
control such as environment-specific grasp operations.

Because there are several design choices for the MR
interface that can be made based on the desired task, we
selected several household tasks and conducted an iterative
design study to understand what factors were important for
enabling novice humans to teach a robot an AOSM. This
design process allowed us to include features that were not
initially considered by the expert designers, but were desired
by the novice users.

IV. ITERATIVE DESIGN STUDY

We conducted an iterative design study with two expert
users (two of the project researchers) and three novice users
in order to design and improve our MR interface, as well as
demonstrate the capabilities of AOSMs.1

A. Study Task

To demonstrate that an AOSM can be built by a human
using MR, we selected several household tasks for a mobile
manipulator to perform, which we represent within what
we term the “Household AOSM”. We chose three different
chores: throwing away bottles, turning off light switches, and
closing sink faucets. Our test environment is shown in Figure
3.

Each element of our Household AOSM (AOSM =
〈C,O,M,A〉) is defined as follows:

• C: a list of three object classes: bottle (a drinking
container with no kinematic articulation), faucet (a sink
faucet, which has a revolute joint connected to a sink
base, which could be closed), and light switch (which
has a revolute joint connected to the wall). Each of
the classes have a 6D local frame Λ, a global pose
Γ, and a kinematic mesh model τ . In order to keep
the AOSM as simple as possible, we only encoded one
attribute: “grasp”, which represents a 6D pose in the
class frame Λ that indicated how to grasp the object for
manipulation.

• O: a list of the instantiated objects from the list of
classes. In our experimental space, we had one bottle,
one light switch, and one sink faucet. Rather than
requiring users to build τ from scratch, we supplied
various primitive shapes and predefined object models
for the user to choose from to represent the objects,
which is reasonable considering there are many exist-
ing object models freely available to be downloaded
[24]. Therefore, when instantiating objects, users were
responsible for defining the “grasp” attribute needed for
the high-level action manipulation actions, as well as the
global pose Γ of the object within the map M which is
needed for navigation (Figure 2).

1A video can be found at https://youtu.be/-09b250TTe8

• M : a 2D occupancy grid M that represents the experi-
mental space (Figure 3). The map is updated with new
semantic information when an object o is instantiated
and its global pose Γ is grounded in the map. It is this
underlying map that enables the robot to autonomously
plan navigation around the environment.

• A: For our demonstration, we paired one high-level
action with each object to represent the three chores.
However, it should be be noted our framework is flexible
enough to allow an arbitrary number of high-level
actions to be defined throughout the interaction by the
user. Our actions are as follows:

1) For the bottle class objects, the high-level action
“throw away” was meant to pick up a bottle and
move it to a trash can in a fixed spot (Figure 2).

2) For the light switch class, a “turn off” high-level
action was meant to flip the switch to the off
position from the on position.

3) For the sink faucet class, a “close faucet” high-
level action was meant to close the faucet.

Users were responsible for using our MR interface
to define the initiation and termination poses of these
actions, while the policy attached π was implemented
using an existing motion planner to move the robot’s
end effector to the grasp pose with respect to the
initiation pose, and then compute and execute a motion
to manipulate the object to the termination pose. The
policy was first planned within the local frame Λ, and
then transformed into the global map frame based on
Γ, enabling the robot to move its end effector to the
necessary locations in the map to manipulate the object.
We can also use Dynamical Movement Primitives [25]
as a policy within the local frame Λ.

Our study was implemented on a Kinova Movo with a
single 7 DoF arm. Movo is equipped with the capability to
make a 2D occupancy map of its environment using a LIDAR
sensor, as well as localize and navigate to specified poses.
When planning any of the object manipulation actions, the
robot would autonomously move its base between 0.8 and
1.25 meters behind the object’s global pose Γ, depending
on what the “grasp” attribute and global pose Γ of the
object was, enabling the agent to execute the local policy
and manipulate the object into its termination pose from
the initiation pose (Figure 1). While this range of approach
distances was chosen by hand for the purposes of completing
our specified chores, they could in practice be specified
by the user via the MR interface. For all of these motion
behaviors, we use the motion and path planning stack that is
included with the Movo robot. By supplying our metric map
M to the path planning stack, we are able to autonomously
navigate the robot to specific points while avoiding occupied
space.

B. Mixed Reality Interface

The two most commercially-available MR-HMDs are the
Microsoft HoloLens and the MagicLeap. We have previously

https://youtu.be/-09b250TTe8


Fig. 3: Images from our Household AOSM. Left: One perspective image with our three classes C being instantiated with
objects O (light switch (purple), bottle (blue), sink (red)) and robot (orange). Right: The 2D occupancy grid M in our
Household AOSM (Colored shapes and robot added to the map for visualization purposes).

used the Microsoft HoloLens for facilitating human-robot in-
teractions [9], but chose to use the Magic Leap for this work
because it provides higher precision head-pose estimation.
However, the following work can be applied to any MR-
HMD system. Our codebase for the MR interface is publicly
available.2

We used Unity, a 3D game engine, to develop the virtual
environment for the MR interface, by developing a scene that
maintains virtual objects, and deploy it to the Magic Leap.
By connecting the Magic Leap to a ROS network, we are able
to share information between the MR interface and a ROS-
enabled robot. (A more detailed description of how this can
be done may be found in Whitney et al. [26]). Crucially, our
system is developed such that no objects in the Unity scene
need to be pre-instantiated; the user is able to construct the
scene completely at runtime via our MR interface.

The Unity-ROS interface allows the Unity scene to output
information on the ROS network to communicate to the
robot, or listen to information from the robot to update the
virtual scene. In general, MR interfaces enable users to see
visualizations of 3D meshes overlaid on top of the physical
workspace, as well as interact with these visualizations using
controllers or hand gestures. We leverage MR to enable
users to instantiate virtual representations of the objects from
a set of classes using an MR menu, supply attribute and
high-level action information needed for object manipulation
by interacting with the model τ of objects in order to
specify initiation and termination poses, and ground objects
to the map (i.e: specify Γ) for the purpose of navigation by
dragging the virtual objects over their real-world counterparts
(Figure 1).

To define the static transform that is needed to convert
Unity poses to ROS poses, we enable users to drag a virtual
model of the robot over the real one to align them together
(Fig 2), similarly to how they would ground the global pose
Γ of an object. After the user drags the virtual robot over the
real one, we save the transformation from the virtual robot
pose to the real robot pose as the static transform from Unity
to ROS poses. With this transform, we now have a way to
use a MR-HMD to ground poses of objects in the robot’s
map. More information on pose transformation between MR-
HMDs and robot maps can be found in Whitney et al. [26].

2 https://github.com/h2r/ActionOrientedSemanticMaps

C. Rapid Iterative Testing and Evaluation

We took a Rapid Iterative Testing and Evaluation (RITE)
[27] approach to quickly identify and fix issues with the
system.

For the purpose of the iterative design study, we limited
the Household AOSM by removing the light switch and sink
faucet from the Household AOSM, and only focused on the
bottle object. Users in our study were instructed to specify
the “grasp” attribute for the bottle class, the initiation and
termination pose of the “throw away” action, and the global
pose Γ of the object in the map. The expert users then
completed the full Household AOSM by also handling the
sink faucet and light switch.

We built an initial interface for the system, and tested and
iterated on the design of the interface. We tested the initial
system with two expert users (two of the project researchers),
iterated on the design, and then tested and iterated with three
novice users, who used our interface until they successfully
performed the task. We then tested the final system with the
expert users.

1) System V0: We started with an initial design for the
MR interface, system V0, that was derived from previous
MR interfaces we have used with robotic systems [9]. The
interface allows users to drag virtual representations over
objects in the real world that they want to interact with,
as described in the Section IV-B. However, we noticed that
users have slight calibration issues with hand gestures (i.e.,
it is hard to accurately capture hand gestures), such that we
decided to use a hand controller instead to circumvent this
calibration issue. We drew inspiration from the MagicLeap’s
toy app which uses the hand controller to orient objects in
front of the controller. Thus, our initial design improved on
our previous interfaces by introducing a hand controller to
replace gesture in order to attempt to address user issues with
positioning virtual representations.

We then tested system V0 with the expert users. We
quickly found that the expert users would sometimes un-
knowingly misalign the virtual representations over the real-
world objects. For example, after specifying the global pose
for a specific bottle, the user would walk around the room
to specify other attribute and action information; however,
after physically walking in the room, and thus changing
perspective, the user would notice that global pose of the

https://github.com/h2r/ActionOrientedSemanticMaps


object appeared misaligned with the real-world object. We
implemented an intervention (i.e., edit) function for the
sequence of human actions for an item, such that the MR
interface would permit users to respecify and edit infor-
mation in the AOSM. We also noticed that scenes would
sometimes become cluttered with specifications for multiple
items; consequently, we implemented a color scheme for
objects to make differentiation between virtual objects easier.

2) System V1: We tested system V1 with the first novice
user. The major observation from the user concerned the
sensitivity of the hand controller, which the user found to
be overly sensitive to touch and thus difficult to use to
precisely position the virtual representations. We reduced the
sensitivity of the controller for the subsequent version.

3) System V2: Feedback from the second novice user cen-
tered on a desire to know what action they were specifying
for the robot at any given time, as they sometimes lost their
place in the sequence while adding states. We addressed
this issue for the subsequent version by implementing a
text display in the virtual workspace that identifies whether
they were specifying action information, object pose/attribute
information or calibration information (Figure 2).

4) System V3: The third novice user tested system V3,
and did not have any major issues with using the system.

We therefore proceeded to test system V3 with the original
expert users. The experienced users were able to use this final
version of the system to complete more complex cleanup
tasks, such as turning off sinks and turning off lights.

D. Overall Impressions of System

The interviews with the three novice users revealed that,
overall, they liked the system and found the system intuitive
when they used it.

One notable consideration revealed during user testing
concerns sensitivity of the hand controller; users varied in
how sensitive they wanted the hand controller to be in
response to their input. The first novice user found the hand
controller too sensitive (prompting a reduction in sensitivity);
the second novice user did not report any issues with sensi-
tivity; the third novice user found it not sensitive enough.

Ultimately, the insight from novice user expectations of
the system helped guide the design of the final system. The
two expert users tested the final system with complex tasks
of flipping light switches and turning off faucets.

As predicted, a major problem of the MR interface was
the decalibration due to drift. Over time, users would see the
virtual objects drift away from their calibrated poses because
the MR-HMD was not able to accurately localize itself within
a large space with a constantly moving user, making their
groundings inaccurate for the robot. To resolve this, multiple
interventions to edit specified information was required.
Although allowing users to readjust the transform between
Unity and ROS made this issue less pressing, users reported
that it was cumbersome to do this repeatably. Therefore,
high-precision pose tracking is crucial for using MR to
specify semantic information about the robot’s environment.
Another option is to incorporate autonomous perception

modules beyond SLAM into the MR interface, such as object
detection and pose estimation, which can leverage the user-
specified information to enable the object’s pose estimate to
be robust to decalibration due to drift between the robot and
the MR-HMD. The human-specified information can be used
in conjunction with iterative computer vision algorithms, like
ICP for pose registration [28], which are are sensitive to
initial starting points and would benefit from human input.

V. RESULTS

In order to evaluate our system, we demonstrated that
our final MR interface enables an expert user to build the
full Household AOSM to sufficiently perform all three high-
level behaviors: navigating to a bottle and throwing it away,
navigating to a light switch and turn it off, and navigating to a
sink faucet to close it. For each object, users were tasked with
specifying an object’s Γ, “grasp” attribute, and the initiation
and termination pose for the associated action (as discussed
in Section IV). Once the users trained the robot with this
information, the robot was able to plan with the Household
AOSM. For planning, the agent autonomously performs a
multi-step plan of a) moving to a position near the object’s Γ
(as described in Section IV), b) grasping the object based on
the “grasp” attribute and initiation pose, and c) manipulating
the object into its termination pose (Figure 1). Whenever
the agent fails to execute the plan, we enable the user to
intervene (i.e., edit) any specified information.

To quantify our evaluation, we recorded both the total time
it took to teach the high-level action, specify the global pose
of the instantiated object, and have the robot autonomously
plan to execute the behavior. In addition to the total time,
we also record the number of interventions required until a
successful plan is executed.

There is no fair baseline comparison to our method be-
cause we are the first work to present a representation that has
both semantic and planning information that is learnable via
MR. Comparing against direct teleoperation or kinesthetic
teaching in the real workspace is not a valid baseline because
there is no way to specify the position and orientation of all
the links in an object by controlling the robot’s arm, which
is needed for specifying the initiation and termination pose
of an action. A 2D visual interface that uses our metric map
M is also not a valid baseline because it does not provide
any geometric information about the location of the objects,
only geometric information of obstacles slightly above floor
height, and therefore can not be used to label object pose
information. Making a 3D static map of the environment and
visualizing it on a 2D monitor is also not a valid baseline
because user intervention requires a dynamically updated
model of the room to respecify information, which a static
map does not provide. Continuously mapping a large 3D
dynamical scene with on-board robot sensor data is not a fair
comparison because it requires the user to move the robot to
acquire desired view points, introducing a conflating factor of
robot control that is not encountered with the MR interface.
A projector-based augmented reality interface is also not a
feasible comparison because it does not provide a method



for manipulating or visualizing 3D kinematic mesh models,
which is necessary for defining our high-level actions.

For the bottle task, our expert user took 31 seconds, and
had 0 interventions. For the light switch task, the expert user
took 91 seconds, and had 4 interventions. For the sink faucet
task, the expert user took 45 seconds and 3 interventions.
Note that the total times include all of the interventions
(i.e: the timer was not stopped between each intervention).
Therefore, the light switch and sink faucet task have longer
reported times due to the number of interventions needed to
complete the task, but the average intervention time for the
light switch task was 22.75 seconds, and 15 seconds for the
sink faucet. It took less than 2 minutes to complete each of
our tasks.

VI. CONCLUSION

We present a solution to enable users to teach robots
both high-level actions for object manipulation and semantic
map representations for navigation via an MR interface.
We introduced Action-Oriented Semantic Maps (AOSMs),
a plannable representation which can enable a human to
teach a robot information needed for object manipulation
and navigation through MR. To demonstrate that humans
can build AOSMs to plan for complex object manipulation
tasks, we showed that novice and expert users can program
a mobile manipulator to perform three tasks: picking up a
bottle and throwing it in the trash, closing a sink faucet, and
flipping a light switch.

While our approach has shown significant promise, there
are limitations to the MR-HMD interface and there exists
room for improvements. For example, our iterative design
study revealed that it is crucial to maintain accurate local-
ization of the MR-HMD within the map, which is more
difficult to guarantee in highly-unstructured and dynamic
domains. We hope to improve the MR interface by enabling
physical rotation of the hand controller to rotate the object
in the virtual space, rather than using the touch pad on
the hand controller. We also hope to include a calibration
phase for the MR interface’s sensitivity to address individual
variation across users. Finally, a natural extension would be
to generate object classifiers from the teacher’s annotations
to enable autonomous perception of objects in the room, as
well as using MR with AOSMs to conduct human-in-the-
loop reinforcement learning to improve object manipulation
policies.
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