
Planning with Abstract Markov Decision Processes

Nakul Gopalan∗
ngopalan@cs.brown.edu

Marie desJardins†
mariedj@umbc.edu

Michael L. Littman∗
mlittman@cs.brown.edu

James MacGlashan‡
james@cogitai.com

Shawn Squire†
ssquire1@umbc.edu

Stefanie Tellex∗
stefie10@cs.brown.edu

John Winder†
jwinder1@umbc.edu

Lawson L.S. Wong∗
lsw@brown.edu

∗ Brown University, Providence, RI 02912
† University of Maryland, Baltimore County, Baltimore, MD 21250

‡ Cogitai, Inc.

Abstract
Robots acting in human-scale environments must plan under
uncertainty in large state–action spaces and face constantly
changing reward functions as requirements and goals change.
Planning under uncertainty in large state–action spaces re-
quires hierarchical abstraction for efficient computation. We
introduce a new hierarchical planning framework called Ab-
stract Markov Decision Processes (AMDPs) that can plan in
a fraction of the time needed for complex decision making
in ordinary MDPs. AMDPs provide abstract states, actions,
and transition dynamics in multiple layers above a base-level
“flat” MDP. AMDPs decompose problems into a series of
subtasks with both local reward and local transition functions
used to create policies for subtasks. The resulting hierarchi-
cal planning method is independently optimal at each level of
abstraction, and is recursively optimal when the local reward
and transition functions are correct. We present empirical re-
sults showing significantly improved planning speed, while
maintaining solution quality, in the Taxi domain and in a
mobile-manipulation robotics problem. Furthermore, our ap-
proach allows specification of a decision-making model for a
mobile-manipulation problem on a Turtlebot, spanning from
low-level control actions operating on continuous variables
all the way up through high-level object manipulation tasks.

1 Introduction
When carrying out tasks in unstructured, multifaceted en-
vironments such as factory floors or kitchens, the result-
ing planning problems are extremely challenging due to the
large state and action spaces (Bollini et al. 2012; Knepper
et al. 2013). The state–action space in these domains grows
combinatorially with the number of objects. Typical plan-
ning methods require the agent to explore the state–action
space at its lowest level, resulting in a search for long se-
quences of actions in a combinatorially large state space.
For example, cleaning a room requires arranging objects in
their respective places. A naive approach for arranging ob-
ject might have to search over all possible states by placing

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: The continuous object manipulation domain,
where the Turtlebot agent needs to fetch a block into a goal
room. The task is solved online with an AMDP hierarchy
that provides low-level actions to solve the abstractly defined
task to “push the block into the blue room”. The AMDP
planner shows reactive control when moving the blocks to
deal with stochasticity of the environment and the robot’s
controllers.

all objects in all possible locations, resulting in an intractable
inference problem with increasing objects.

One promising approach is to decompose planning prob-
lems in such domains into a network of independent sub-
goals. This approach is appealing because the decision-
making problem for each subgoal is typically much simpler
than the original problem. There are two ways in which the
decision problem can be simplified. First, instead of select-
ing between actions, the agent can select between subgoals
that are recursively solved, decreasing the search depth. Sec-
ond, the state representation of the world can be compressed
to include only information that is relevant to the current de-
cision problem. Importantly, planning algorithms for each
subproblem can be custom-tailored, allowing each goal to
be solved as efficiently as possible.

We propose Abstract Markov Decision Process (AMDP)

hierarchies as a method for reasoning about a network of
subgoals. AMDPs offer a model-based hierarchical repre-
sentation that encapsulates knowledge about abstract tasks
at each level of the hierarchy, enabling much faster, more
flexible top-down planning than previous methods (see Sec-
tion 2). An AMDP is an MDP whose states are abstract rep-
resentations of the states of an underlying environment (the
ground MDP). The actions of the AMDP are either primi-
tive actions from the environment MDP or subgoals to be
solved. An AMDP hierarchy is an acyclic graph in which
each node is a primitive action or an AMDP that solves a
subgoal defined by its parent. The main advantage of such
a hierarchy is that only subgoals that help achieve the main
task need to be planned for; crucially, plans for irrelevant
subgoals are never computed. Another desirable property of
AMDPs is that agents can plan in stochastic environments,
since each subgoal’s decision problem is represented by an
MDP. Moreover, each subgoal can be independently solved
by any off-the-shelf MDP planner best suited for solving that
subgoal. Finally, if each AMDP’s transition dynamics accu-
rately models the subgoal outcomes, then an optimal solu-
tion for each AMDP produces a recursively optimal solution
for the whole problem; if the transition dynamics are not ac-
curate, then the error associated with the overall solution can
still be bounded (Section 3.1).

For example, consider the Taxi problem (Dietterich 2000)
shown in Figure 3a and its AMDP hierarchy in Figure 2.
The objective of the task is to deliver the passenger to their
goal location out of four locations on the map. The subgoal
of Get Passenger, which picks up the passenger from a
source location, is represented by an MDP, with lower-level
navigation subgoals, Nav(R), and a passenger-pickup sub-
goal, Pickup. The state space to solve the Get Passenger
subgoal need not include certain aspects of the environment
such as the Cartesian coordinates of the taxi and passenger.
To solve this small MDP when picking up a passenger at the
Red location, it is unnecessary to solve for the subpolicy to
navigate to the Blue location. Our hierarchy enables a deci-
sion about which subgoal to solve without needing to solve
the entire environment MDP. Moreover, since the tasks are
abstractly defined (for example, “take passenger to blue lo-
cation”), changing the task description from the “blue” to
the “red” location is straightforward, and users do not have
to directly manipulate the reward functions at each level of
the hierarchy. This abstraction is useful in robotics, as hu-
man users can simply change the top-level task description
and the required behavior will be achieved by the hierarchy.

In the next section, we discuss the relationship of our
work to previous hierarchical planning methods. We then
formally describe an AMDP hierarchy and planning over
AMDPs (Section 3). Our results (Section 4) show that
AMDPs use significantly less planning time than base-level
planners and MAXQ to complete tasks in domains with
large state spaces. In smaller domains, such as the Taxi prob-
lem, AMDPs do as well as a fast base planner like Bounded
Real Time Dynamic Programming (BRTDP) (McMahan,
Likhachev, and Gordon 2005); however, in large domains
such as Cleanup World (MacGlashan et al. 2015)—which
has multiple manipulable objects that require long plans—

AMDPs can produce plans orders of magnitude faster than
all other planners we have examined. We also implemented
a continuous mobile manipulation domain on a Turtlebot, as
shown in Figure 1, which is solved using an AMDP hier-
archy that spans all the way from low-level control actions
to very high-level abstract goals, with exceptionally efficient
planning. Our approach enables the Turtlebot to choose ac-
tions at the lowest level of the hierarchy at 20Hz. Further,
if the environment changes (for example, if a target object
moves), the robot instantly replans and completes the task.
AMDPs are the first hierarchical method to allow real-time
planning on abstractly specified object manipulation tasks in
stochastic environments with continuous variables.

2 Related Work
Subgoals and abstraction provide mechanisms for allow-
ing an agent to efficiently search large state/action spaces.
One of the earliest reinforcement learning (RL) methods
using the ideas of subgoals and abstraction is the MAXQ
model (Dietterich 2000). MAXQ decomposes a “flat” MDP
into smaller subtasks, each accompanying a subgoal and po-
tentially a state abstraction that is specific to the subtask’s
goal. A subtask is a sequence of actions that is used to com-
plete a subgoal. MAXQ constrains the choice of subtasks
that can be chosen in its hierarchy, depending on the context
or parent task. MAXQ can also use relevant state abstrac-
tions for each context, which speeds up learning. MAXQ hi-
erarchies were originally designed for use in model-free RL.
However, they have been used in planning settings (Diuk,
Littman, and Strehl 2006). An AMDP has the form of a non-
primitive subtask of a MAXQ hierarchy, but also includes an
“abstract” transition and reward function defined over the
subtask’s children. AMDPs are therefore model-based, in
contrast to MAXQ. In AMDPs, these abstract transition and
reward functions enable planning purely at the abstract level,
without needing to further descend to lower-level subtasks
or primitive actions until execution. In this work, we focus
on the planning aspects of AMDP hierarchies, and assume
these abstract transition and reward functions are given; fu-
ture work will explore learning these models.

A major limitation of MAXQ is that value functions over
the hierarchy are found by processing the state–action space
at the lowest level and backing up values to the abstract sub-
task nodes. This bottom-up process requires full expansion
of the state–action space, resulting in large amounts of com-
putation. In contrast, Figure 2 shows the Taxi task hierar-
chy, with shaded cells indicating the nodes that get expanded
or solved by an AMDP planner from the initial state in the
environment. AMDPs model each subtask’s transition and
reward functions locally, resulting in faster planning, since
backup across multiple levels of the hierarchy is unneces-
sary. This top-down planning approach decides what a good
subgoal is before planning to achieve it. In this work, be-
cause we want to compare planning speed across methods,
we have provided the transition and reward models for sub-
tasks to the AMDP planner. However, we are currently de-
veloping methods to learn these models from scratch.

The concept of using a subtask model for computing
a policy has also appeared in previous work, such as R-

PUTDOWNPICKUP

ROOT

GET PUT

NAV(R) NAV(G) NAV(B)NAV(Y)

N S E W

Figure 2: The Taxi AMDP hierarchy. Nodes indicate sub-
goals which are solved using an AMDP or a primitive ac-
tion. The edges are actions belonging to the parent AMDP.
Shaded nodes indicate which subgoals are expanded by
AMDPs in a given state. In contrast, bottom-up approaches
like MAXQ (Dietterich 2000) expand all nodes in the figure.
These savings result in significant total planning computa-
tion gains: AMDP planning requires only 3% of the number
of backups that MAXQ requires for the Taxi problem.

MAXQ (Jong and Stone 2008), a model-based learning al-
gorithm for MAXQ. However, in R-MAXQ, the transition
and reward functions violate our model-abstraction require-
ment: their local models are not self-contained. Instead, the
effects of a subtask’s child are computed recursively, requir-
ing planning for each child and descendant for each state
visited in the subtask. Learning transition functions in R-
MAXQ requires recursion all the way to the base level.
AMDPs, in contrast, open the door to new learning algo-
rithms that operate separately at each level, potentially re-
quiring much less data and computation to learn a model.
Moreover, within most of these methods, there are no means
to use specialized planners or heuristics specific to a subtask.

Temporally extended actions (McGovern, Sutton, and
Fagg 1997) and options (Sutton, Precup, and Singh 1999)
are other commonly used bottom-up planning approaches,
which encapsulate reusable segments of plans into a more
tractable form, and are another way to represent subgoals.
Generally, options are used as pre-computed policies for
planning; once available, options can speed up planning in
large domains. However, these pre-computed policies may
themselves be hard to find. When policies for options are
planned for with the entire task, they are as slow as other
bottom-up approaches. Moreover, although temporally ex-
tended actions can decrease plan length and complexity,
their inclusion also increases the branching factor of search,
and can lead to dramatic increases in planning time (Jong
2008). Recently, Konidaris (2016) discussed creating MDPs
at multiple levels of the hierarchy with options, which were
used as precomputed policies. This hierarchy plans for a task
completely at one of the levels of the hierarchy, instead of
planning only for the subgoals that are needed across the hi-
erarchy. Construction of these sets of options at multiple lev-
els requires searching through the entire hierarchy, bottom-
up, which is slower than an AMDP-based approach.

Top-down approaches have been used previously for plan-

ning and have shown improvements in planning speeds
when compared to bottom-up methods. Hierarchical Dy-
namic Programming (HDP) (Bakker, Zivkovic, and Krose
2005) is a top-down approach that was used for planning in
navigation problems. However, the HDP work is specific to
navigation domains, and relies on value iteration (Bellman
1956) for each subtask, whereas AMDPs are more general
because they allow any suitable planner to be used for each
subgoal. For example, for a navigation subtask, A* (Hart,
Nilsson, and Raphael 1968) might be an appropriate method,
but for a subtask of picking a particular object in a room
full of different objects, BRTDP (McMahan, Likhachev, and
Gordon 2005) might be a better choice. Furthermore, the
state aggregations formed by HDP are based on the adja-
cency of physical locations, which do not transfer to mo-
bile manipulation completely, since the abstraction is not
based on completion of subgoals such as picking up pas-
sengers or objects. Nevertheless, the previous application of
HDP to robotic navigation provides strong evidence that the
AMDP approach generalizes to very large robotics-relevant
problems; to support this claim, we demonstrate the use of
AMDPs in a full-stack mobile-robot controller.

Angelic hierarchical planning (Marthi, Russell, and Wolfe
2008) also uses a top-down approach for planning. However,
its use is limited to deterministic domains, and it does not
offer the modularity of using different planning algorithms
at each node. DetH* (Barry, Kaelbling, and Lozano-Pérez
2011) is another top-down hierarchical approach that learns
a two-level hierarchy by breaking the state space into macro-
states and planning deterministically over the macro-states.
Domains like Taxi have stochasticity in the higher levels
of abstraction, so DetH* cannot be directly used. Further,
DetH* does not allow planning in MDPs with a continu-
ous state space. AMDPs are a generalized top-down plan-
ner, which can solve in real time a variety of stochastic do-
mains with combinatorial and/or continuous state variables,
and can completely plan trajectories for a robot to perform
mobile manipulation.

3 Abstract Markov Decision Processes
We consider the problem of an agent interacting with an en-
vironment that is modeled as an MDP (Bellman 1957). An
MDP is defined by a five-tuple (S ,A, T , R, E), where S is
the environment state space; A is the agent’s action space;
T (s, a, s′) is a function defining the transition dynamics
(i.e., the probability that a transition to state s′ will occur
after taking action a in state s); R(s, a, s′) is the reward
function, which returns the reward that the agent receives
for transitioning to state s′ after taking action a in state s;
and E ⊂ S is a set of terminal states that, once reached,
prevent any future action. The goal of planning in an MDP
is to find a policy—a mapping from states to actions—that
maximizes the expected future discounted reward.

Solving an MDP can be quite challenging, so we intro-
duce the concept of an Abstract MDP (AMDP) to simplify
this process. An AMDP is an MDP in its own right, but cap-
tures higher-level transition dynamics that serve as an ab-
straction of the lower-level environment MDP with which
the agent is interacting. Formally, we define an AMDP as

a six-tuple (S̃, Ã, T̃ , R̃, Ẽ , F). These are the usual MDP
components, with the addition of F : S → S̃, a state pro-
jection function that maps states from the environment MDP
into the AMDP state space S̃. Additionally, the actions (Ã)
of the AMDP are either primitive actions of the environment
MDP, or are associated with subgoals to solve in the environ-
ment MDP. The transition function of the AMDP (T̃) must
capture the expected changes in the AMDP state space upon
completion of these subgoals. With these action and state
semantics, an AMDP, in effect, defines a decision problem
over subgoals for the environment MDP.

Naturally, each subgoal for a task must be solved. How-
ever, even a single subgoal might be challenging to solve in
the environment MDP. Therefore, we introduce the concept
of an AMDP hierarchy H = (V,E), which is a directed
acyclic graph (DAG) with labeled edges. The vertices of the
hierarchy V consist of a set of AMDPsM and the set of the
primitive actions A of the environment MDP. The edges in
the hierarchy link multiple AMDPs together, with the edge
label associating the action of an AMDP with either a prim-
itive environment action or a subgoal that is formulated as
an AMDP itself. Consequently, an AMDP hierarchy recur-
sively breaks down a problem into a series of small subgoals.

For example, consider the Taxi problem, where the objec-
tive is to ferry a passenger to their goal location with AMDP
hierarchy shown in Figure 2. The AMDP for the Get Pas-
senger subgoal has access to the location-parameterized ab-
stract action Nav(i) and the primitive action Pickup. The
abstract states and projection function in this AMDP re-
move the Cartesian coordinates of the taxi and passenger,
replacing both with a discrete value corresponding to one
of the colored destinations. The termination states consist of
any states in which the passenger is in the taxi. The reward
function is simply defined to return 1 when the passenger
is picked up. The navigate to Red subgoal, Nav(R), which
is referenced by Get Passenger, is itself another AMDP.
In this case, its actions consist only of the primitive envi-
ronment actions, North, South, East, and West. Its states
and state projection function exclude variables related to the
passenger and its terminal states are defined to be states in
which the taxi is at the Red location. The reward function
returns 1 when the Red location is reached, 0 otherwise. The
AMDP definition for the other Nav subgoals is similar.

Although there are many possible ways to define state ab-
stractions, a useful heuristic is subgoal-based state abstrac-
tion. Subgoals specifically allow the condition of Result Dis-
tribution Irrelevance (Dietterich 2000), in which the state
space collapses into a few states at the end of a temporally
extended action, behaving as a “funneling action,” allowing
a concise representation of the abstract state space.

When a parent AMDP invokes a lower-level node, it ex-
pects that particular subgoal to be achievable; there is cur-
rently no mechanism for backtracking. This is potentially
problematic if the lower-level AMDP’s failure conditions
are not expressible in the higher-level state abstraction, since
the parent would then have no means to reason about the
failure. We currently avoid this problem by ensuring that
termination sets include all failure conditions, and design-

Algorithm 1 Online Hierarchical AMDP Planning

function SOLVE(H)
GROUND(H,ROOT(H))

function GROUND(H, i)
if i is primitive then . recursive base case

EXECUTE(i)
else

si ← Fi(s) . project the environment state s
π ← PLAN(si, i)
while si /∈ Ei do . execute until local termination

a← π(si)
j ← LINK(H, i, a) . a links to node j
GROUND(H, j)
si ← Fi(s)

ing higher-level state spaces that are capable of representing
such failures. However, if the abstractions are themselves
imperfect (e.g., learned), then we would likely need to ad-
dress the problem of failure recovery.

3.1 Planning in AMDPs
In this section, we describe how to plan with a hierarchy H
of AMDPs. The critical property of our planning approach is
to make decisions online in a top-down fashion by exploiting
the transition and reward function defined for each AMDP.
In this top-down methodology, planning is performed by
first computing a policy for the root AMDP for the current
projected environment state, and then recursively computing
the policy for the subgoals the root policy selects. Conse-
quently, the agent never has to determine how to solve sub-
goals that are not useful subgoals to satisfy, resulting in sig-
nificant performance gains compared to bottom-up solution
methods. This top-down approach does require that the tran-
sition model and reward function for each AMDP are avail-
able. In this work, we assume they are given by a designer to
demonstrate the power afforded by this top-down approach.
However, in the future, we plan to investigate how to learn
these abstract transition models and reward functions by
using model-based reinforcement learning approaches. Our
work is analogous to hierarchical task network (HTN) plan-
ners, which use designer-provided background knowledge
to guide the planning process, but can also be learned from
observation (Nejati, Langley, and Konik 2006)

Pseudocode for online hierarchical AMDP planning is
shown in Algorithm 1. Planning begins by calling the recur-
sive ground function from the root of H . If node i passed to
the ground function is a primitive action in the environment
MDP, then it is executed in the environment. Otherwise, the
node is an AMDP that requires solving. Before solving it,
the current environment state s is first projected into AMDP
i’s state space with AMDP i’s projection function Fi. Next,
any off-the-shelf MDP planning algorithm associated with
AMDP i is used to compute a policy. The policy is then fol-
lowed until a terminal state of the AMDP is reached. Fol-
lowing actions selected by the policy for AMDP i involves
finding the node the actions links to in hierarchy H , and
then calling the ground function on that node. Note that after

the ground function returns, at least one primitive action in
the environment should have been executed. Therefore, after
ground is called, the current state for the AMDP is updated
by projecting the current state of the environment with Fi.

AMDP planning can be substantially faster than general
MDP planning for two reasons. First, the hierarchical struc-
ture allows high-level AMDP actions to specify subgoals for
the lower-level MDPs, dramatically decreasing search depth.
Second, each subgoal can take advantage of strong heuristics
or planning knowledge that is not easily incorporated into a
planning algorithm solving the global problem. For exam-
ple, in the Taxi problem, the navigation subgoals enable A*
to be used with a strong heuristic, such as Euclidean dis-
tance from the goal, to help complete the subtasks. In con-
trast, bottom-up hierarchical algorithms, including MAXQ,
do not afford the ability to use custom planning algorithms
for each subgoal and require expanding subgoals that will
ultimately prove unhelpful to solving the task.

Since hierarchical planners constrain which decisions can
be made, optimal solutions to them do not necessarily max-
imize the expected future reward for the underlying envi-
ronment MDP. Dietterich (2000) distinguishes between op-
timality for the environment and several notions of optimal-
ity that are constrained by the hierarchy. A hierarchically
optimal policy is one that achieves the maximum reward at
the base level, subject to the constraint that actions are con-
sistent with the given hierarchical structure. In contrast, re-
cursive optimality is a local concept in which the policy is
optimal at each level of the hierarchy; that is, the policy at
each node is optimal given the policies of its children. A
MAXQ policy is recursively optimal (Dietterich 2000).

Actions in an AMDP are chosen to be optimal with re-
spect to its level of abstraction, given any goal conditions
from the level above. The notion of optimality within each
level of abstraction is weaker than recursive optimality, since
the abstract MDPs do not query the transition and reward
functions of the flat MDP to learn a correct semi-MDP
(SMDP) (Sutton, Precup, and Singh 1999) model of the task
while planning. However, with appropriate design a planner
optimal at each abstract level can be as effective as a recur-
sively optimal planner. An AMDP hierarchy without state
abstraction is equivalent to solving the base-level MDP with
temporally extended actions in the form of subtasks. With-
out state abstraction, if the transition and reward functions
for each AMDP respect the true multi-timestep transitions
for completing those subgoals in the environment, and each
AMDP is optimally solved, then the solutions of the hier-
archical MDP planner will be recursively optimal by defi-
nition (Dietterich 2000). Further, Brunskill and Li (2014),
in Lemma 5, prove that bounded error in an SMDP transi-
tion and reward function leads to bounded error in its value
function and Q function. That is:

|Q∗1(s, a)−Q∗2(s, a)| ≤ max
s,a

εs,a , (1)

where Q∗1(s, a) and Q∗2(s, a) are the optimal Q values of the
state–action pair under two different SMDP models, and ε
is a polynomial function of the difference in the transition
and reward functions of the two SMDPs. Hence, without

state abstraction, AMDPs with bounded error in their tran-
sition and reward functions would have bounded errors in
their value function. Consequently, using imperfect AMDP
models can still produce reasonable results.

3.2 Example AMDP Hierarchies
As examples of source (environment) MDPs and AMDP hi-
erarchies, we present hierarchies for Cleanup World (Mac-
Glashan et al. 2015) and the “fickle taxi” domain used by Di-
etterich (2000) for MAXQ. We use the object-oriented MDP
(OO-MDP) formalism to represent these domains (Diuk,
Cohen, and Littman 2008). These hierarchies are extensively
defined in the supplementary material.1

Fickle Taxi The Fickle Taxi problem was used by Diet-
terich (2000) to introduce the MAXQ planning hierarchy.
We created AMDP analogs for the hierarchical structure
used in the original MAXQ work. In the flat (level 0) MDP,
there are six actions: north, south, east, west, pickup passen-
ger, and drop passenger. States in the flat MDP consist of the
physical grid-cell coordinates of passengers, taxi, and loca-
tions. Locations and passengers also have a color attribute,
and the taxi has an attribute pointing to its current passenger,
if any. Movement actions of the taxi are noisy with a proba-
bility of 0.2, and the passenger changes their destination af-
ter getting in the taxi with a probability of 0.3. The stochas-
ticity of the fickle passenger penalizes hierarchical methods
that use temporally extended navigation actions, which ter-
minate only when the taxi reaches the goal location.

At level 1 of the hierarchy, the abstract actions are Pickup,
which puts a passenger into the taxi if they are at the same
location; Putdown, which drops a passenger off at the cur-
rent location; and Nav(i), which drives the taxi to location i.
The transitions have been defined deterministic at this level;
however, they can be defined stochastically according to the
passenger’s fickle behavior. The state for this AMDP ab-
stracts away the physical coordinates of passengers, taxi,
and goal locations, replacing them with level 1 passenger
and taxi variables, each containing one of the four possi-
ble locations or an “on-road” designation that represents all
states in which the taxi and the passengers are not at one of
the four locations. For Nav(R), the reward function returns
1 when the taxi is at location Red, and 0 otherwise. Nav(R)
terminates when the taxi is at the location Red.

At level 2, the AMDP actions are Get, which puts the pas-
senger into the taxi; and Put, which drops the passenger at
their destination. The states abstract away the taxi and pas-
senger locations. Hence, the subtask hierarchy of MAXQ is
similar to AMDPs; however, the task decomposition is local
in its reward functions, transition function, and value func-
tion or planning computations, resulting in substantial sav-
ings in planning time.

Cleanup World Our second evaluation domain is Cleanup
World (MacGlashan et al. 2015), representing a mobile-
manipulation robot, as shown in Figure 4a. Cleanup World
is a good testbed for planning algorithms, because its state

1http://h2r.cs.brown.edu/wp-content/uploads/2017/03/AMDP-
ICAPS-SupplementaryMaterial.pdf

(a) Taxi problem

102 103 104 105 106

Num. backup operations

0

20

40

60

80

100

%
 ta

sk
s

co
m

pl
et

ed

AMDP
BRTDP
MAXQ

(b) Percentage of completed plans (of
1000 problems), given a backup budget.

102 103 104 105 106

Num. backup operations

0

20

40

60

80

A
vg

. n
um

. s
te

ps

AMDP
BRTDP
MAXQ

(c) Average number of steps needed to de-
liver the passenger in completed plans.

Figure 3: Taxi domain using AMDPs, base-level planning (BRTDP), and MAXQ. AMDPs and the base-level planner have
almost 100% completion rate after 4000 backup operations, whereas MAXQ needs orders of magnitude more backups to plan.

space grows combinatorially with the number of objects and
rooms, similar to real-world robotics planning problems.
The robot can have a variety of goals, such as moving the
chair to the red room or moving all objects to the blue room.
Abstract actions include moving to a door connected to the
room in which the robot currently resides, moving from a
door to a connected room, moving to an object currently in
the same room (or doorway) as the robot, taking an object
next to the robot to a door, and taking an object from a door
to a connected room. The source MDP goal conditions for
each of these AMDP actions can be defined based on the
action arguments. Using the MoveToDoor(d) AMDP as an
example, its reward function returns 1 when the agent is at
the specified doorway d, and 0 otherwise. MoveToDoor(d)
terminates at any state in which the robot is in the doorway.

The abstract actions define a corresponding state repre-
sentation that abstracts away the geometric spatial informa-
tion from the source OO-MDP. Such a representation retains
the same objects as the source OO-MDP, but represents ob-
jects’ positions and the room–door topology relationally in-
stead of spatially. Specifically, the robot and household ob-
jects have an attribute that points to the doorway/room in
which they reside; the robot has an attribute that points to ad-
jacent household objects; and the room points to connected
doorways (and vice versa). A second-level AMDP involves
even higher-level actions, such as taking any given object to
any given room. The corresponding high-level state space
for this AMDP abstracts away the room-door topology.

4 Results
We compared AMDP planning performance against a flat
planner and MAXQ in Fickle Taxi and Cleanup World.
For each method, we generated plans using bounded
RTDP (McMahan, Likhachev, and Gordon 2005), a state-
of-the-art method with performance guarantees. We used
MAXQ with state abstraction, that is, MAXQ-Q by Diet-
terich (2000). We compared approaches via two metrics: (1)
Bellman updates/backups needed for effective planning and
(2) steps taken to solve the task given a budget of Bellman
updates. We plotted the average steps to completion only
if the task was solved in more than 5% of 1000 trials. We

recognize that MAXQ is learning a Q-function model-free;
however, it is the closest comparison to AMDPs in terms
of state and temporal abstraction. We also implemented op-
tions, but found, consistent with Jong (2008), that they per-
formed less well than the base-level planner. We cannot use
other top-down approaches, because HDP does not general-
ize to non-navigation based domains and DetH* does not al-
low multi-level hierarchies or stochastic transitions at higher
levels of abstraction, which are needed for Taxi. We further
used the AMDP hierarchy for Cleanup World to control a
Turtlebot in a continuous space with planning over low-level
control actions in the lowest level of the hierarchy.

4.1 Taxi Domain
In Taxi, we defined a task to be completed if a planner
found a solution that executed ≤ 100 primitive actions. For
MAXQ, we used the same state abstractions and tuned pa-
rameters given by Dietterich (2000). MAXQ required about
32,000 updates/backups to first becoming capable of com-
pleting the task, and about 256,000 backups to learn an op-
timal policy. In contrast, as shown in Figure 3b, AMDPs ex-
hibited a 100% completion rate at 8000 backups, slightly
faster than the base-level planner. The number of steps to
complete the task with AMDPs (22.5) was higher than the
base-level planner (19.8) (see Figure 3c), because the hier-
archical action of navigate is penalized by the passenger’s
fickle behavior. The base-level planner outperforms AMDPs
in this domain because the taxi task is relatively simple and
plans are very short. However, this will no longer be the case
when the domain’s state space is combinatorially large.

4.2 Cleanup World
We constructed two different configurations of the Cleanup
World domain. The first configuration (3rm) had 3 rooms
with 3 objects and about 56 million states. The optimal plan
was 25 steps. The second configuration (4rm, shown in Fig-
ure 4a) had 4 rooms with 3 objects and more than 900 mil-
lion states. The optimal plan was 48 steps long. We defined
the task to be completed if the agent is able to solve it within
5 times the number of steps to solve the task optimally.

(a) Cleanup World (4rm)

104 105 106 107

Number of backup operations

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 ta

sk
s

co
m

pl
et

ed

AMDP (3rm)
AMDP (4rm)
BRTDP (3rm)
BRTDP (4rm)

(b) Tasks completed within a planning budget.

104 105 106 107

Number of backup operations

20

30

40

50

60

70

A
ve

ra
ge

 s
te

ps
 to

 c
om

pl
et

io
n

AMDP (3rm)
AMDP (4rm)
BRTDP (3rm)
BRTDP (4rm)

(c) Steps taken to move an object to a room.

Figure 4: (a) Cleanup World (4-room configuration shown) using AMDPs and base-level (BRTDP) planning. (b-c) AMDPs
(black) have near-perfect completion rates, finding plans of similar length orders of magnitude faster than BRTDP (red).

In both configurations, AMDPs solved the task with an or-
der of magnitude fewer backups than the base-level BRTDP,
as shown in Figure 4. AMDPs solved 3rm and 4rm to almost
100% completion rate with about 5000 and 80,000 backups,
respectively, whereas BRTDP needed 320,000 and 512,000
backups, respectively, to achieve the same performance.

We also solved a basic Cleanup World problem with 3
rooms and one object (25,000 states), in which both AMDPs
and the base-level planners could find the optimal solu-
tion within 500 backups, showing that the task was simple
enough not to need complex hierarchies. However, we found
that, even in this simplified configuration, MAXQ was un-
able to find a solution with 8,000,000 backups.

AMDPs have a particular advantage in Cleanup World
because long plans are needed, and solving tasks requires
manipulating one out of many present objects. Such com-
binatorial state spaces are present in everyday manipulation
tasks, and AMDPs are better equipped than other hierarchi-
cal methods or base-level planning to tackle them.

4.3 Continuous Cleanup World on Turtlebot
To illustrate the ability of AMDP hierarchies to transfer be-
tween domains and use different planners at different levels,
we constructed a continuous version of a 3-room, 1-object
Cleanup World domain, which we tested on a Turtlebot. The
agent in Continuous Cleanup World is a modified TurtleBot
with a pair of appendages that can guide blocks. The ap-
pendages make pushing the block easy; however, they make
movement within the domain hard, as a point turn is not pos-
sible in most places, increasing the overall plan lengths.

At level 0, the agent has a continuous position in Cartesian
coordinates, in a 9ft×9ft world. The agent also has a con-
tinuous angle attribute for its orientation. The Turtlebot can
move forward and turn clockwise/counter-clockwise. The
continuous forward action moves the robot forward by about
0.1ft. The turn actions change the orientation of the agent
about 0.15 radians. The object also has a continuous posi-
tion attribute. The objective again is to move the object to a
goal room, from any location in the world.

Our abstraction of the continuous source MDP connects

to the (discrete) Cleanup World AMDP hierarchy from the
previous subsection. At level 1, we discretize the world into
9× 9 cells and the agent’s bearing into the 4 cardinal direc-
tions. The subtasks at this level are moving forward by one
grid cell, and turning clockwise/counter-clockwise by π

2 ra-
dians. This level-1 AMDP corresponds to the source MDP of
(discrete) Cleanup World, so we immediately obtain higher-
level abstractions for Continuous Cleanup World as well.
Additionally, the top-down nature of AMDP planning en-
ables the retention of all higher-level models and previously
computed policies. In contrast, bottom-up approaches such
as MAXQ would have needed to re-solve all subtasks.

In addition to the above level-1 abstraction, we also need
to specify how to solve level-1 subtasks. Since the source
MDP is continuous, low-level planners such as Rapidly
Exploring Randomized Trees (LaValle and Kuffner 2001)
could have been used to plan short distances of single grid
movement. However, we use closed-loop controllers, be-
cause they allow faster planning and are less complicated to
specify for these small movements. This domain application
shows how different planners can be used at different levels
of the AMDP hierarchy, depending on their suitability.

The Turtlebot is controlled using movement messages
sent by our planner over ROS (Quigley et al. 2009) at 20Hz.
Our planners can publish commands at over 100Hz, but
20Hz is the standard rate at which the Turtlebot publishes
commands to its mobile base. The robot can be moved faster
by publishing higher velocities per motion command, but we
do not want the Turtlebot to move too quickly within the lab.
The location and pose of the Turtlebot and the object are ob-
tained using a motion capture system.

Put together, our AMDP hierarchy solves this continu-
ous problem in real time. We can see in the video2 that the
robot plans in real time to complete the manipulation task
as shown in Figure 5. The robot makes minor corrections to
its trajectory and recovers from mistakes in real time. It also
recovers when the object is removed from its arms, and re-
plans to recover the object instantaneously to push the object
to the goal location as shown in Figure 6. This shows that

2https://youtu.be/Bp3VEO66WSg

(a) Starting position for the turtlebot. (b) Getting to the block. (c) Pushing the block into the goal room.

Figure 5: In this figure, we see that the robot starts from a random position and pushes the block into the goal room, with blue
walls, using its arms. The robot makes minor corrections in trajectories when it overshoots.

(a) Pushing the block. (b) Losing the block. (c) Adjusting trajectory. (d) Getting to the goal.

Figure 6: This figure shows the importance of having MDPs to control the lowest level of the hierarchy. The Turtlebot starts to
push the block into the goal location, but has the block removed from its arms, and replaced at another location. The Turtlebot
corrects its trajectory immediately, getting to the block and pushing it into the goal.

fast reactive control is possible in top-down hierarchies such
as AMDPs, even in domains with significant stochasticity.
Furthermore, the hierarchy allows us to control the robot at
different levels of abstraction, since we can execute any sub-
goal by only planning with its subtree in the task hierarchy.

5 Conclusions
We introduced a novel planning approach using Abstract
Markov Decision Process (AMDP) hierarchies, which de-
compose large planning problems into AMDPs, represent-
ing subtasks that have local transition and reward functions.
AMDPs compute plans for large problems orders of magni-
tude faster than other planners. Options and MAXQ may fail
to plan in large domains because of the time spent on recur-
sively decomposing the value functions from the base level.
Hence, even though MAXQ and options provide strong the-
oretical guarantees of being recursively and hierarchically
optimal, respectively, their planning time might be too long
for actual agents to act in the world. AMDPs, on the other
hand, offer a weaker notion of optimality at every abstract
level, but allow faster planning in large domains. Previous
top-down planning approaches such as HDP and DetH* are
not generic enough to allow mobile manipulation in stochas-
tic continuous domains. Moreover, the AMDP hierarchical
structure allows AMDPs to be invariant to small changes in
stochasticity at the flat level. This property has useful appli-
cations in robotics, when accurate models for the base-level
transitions are not available, allowing the robot to recover
reactively from missteps or environmental noise.

We demonstrated with the Taxi and Cleanup World do-
mains that AMDPs trade orders-of-magnitude faster plan-
ning time for potentially suboptimal solutions. Addition-

ally, in the Turtlebot Continuous Cleanup World, our AMDP
hierarchy provides a model for a robot’s entire capabil-
ity stack. This unified model allows tasks, specified as
high-level abstract goals, to be efficiently planned for and
grounded into low-level control actions. This planning
speedup is crucial for planning in large domains such as
robotics, navigation, and search and rescue.

However, to fully realize the potential of AMDPs, we
must go beyond provided abstract transition and reward
functions, and fixed AMDP hierarchies and state abstrac-
tions. We believe that AMDP transition dynamics can be
learned with model-learning methods without recursion to
the base level, leading to a faster model-based approach to
MAXQ reinforcement learning. Our current focus is on de-
veloping methods to learn the AMDP hierarchies and their
state abstractions automatically from experiential data.

Further, the top-down hierarchy allows the choice of a
specific subtask from the tree to be solved, instead of al-
ways solving the task from the root node. Subtasks such
as “move forward one grid cell” can be solved by moving
the root node to become the specific subtask, i.e., the new
root for the AMDP hierarchy would be at “move forward.”
This flexibility would be useful when a robot is commanded
by language, where directions of the form “go north three
steps” and tasks like “go to the blue room with the block”
can be solved in the same manner, within the same hierar-
chy. We are currently collecting natural language datasets to
study this strategy. Ultimately, AMDPs will allow specify-
ing robotics tasks at different levels of abstraction, such that
we can command and guide robots using natural language.

Acknowledgments
This material is based upon work supported by the National
Science Foundation (grants IIS-1637614 and IIS-1637937),
the US Army/DARPA (grant W911NF-15-1-0503), and
the National Aeronautics and Space Administration (grant
NNX16AR61G).

Lawson L.S. Wong was supported by a Croucher Founda-
tion Fellowship.

References
Bakker, B.; Zivkovic, Z.; and Krose, B. 2005. Hierarchical
dynamic programming for robot path planning. In IEEE/RSJ
International Conference on Intelligent Robots and Systems.
Barry, J. L.; Kaelbling, L. P.; and Lozano-Pérez, T. 2011.
Deth: Approximate hierarchical solution of large markov de-
cision processes. In International Joint Conference on Arti-
ficial Intelligence.
Bellman, R. 1956. Dynamic programming and lagrange
multipliers. Proceedings of the National Academy of Sci-
ences 42(10):767–769.
Bellman, R. 1957. A Markovian decision process. Indiana
University Mathematics Journal 6:679–684.
Bollini, M.; Tellex, S.; Thompson, T.; Roy, N.; and Rus,
D. 2012. Interpreting and executing recipes with a cook-
ing robot. In International Symposium on Experimental
Robotics.
Brunskill, E., and Li, L. 2014. PAC-inspired option dis-
covery in lifelong reinforcement learning. In International
Conference on Machine Learning, 316–324.
Dietterich, T. 2000. Hierarchical reinforcement learning
with the MAXQ value function decomposition. Journal of
Artificial Intelligence Research 13:227–303.
Diuk, C.; Cohen, A.; and Littman, M. L. 2008. An object-
oriented representation for efficient reinforcement learning.
In International Conference on Machine Learning.
Diuk, C.; Littman, M. L.; and Strehl, A. 2006. A hierarchi-
cal approach to efficient reinforcement learning in determin-
istic domains. In International Conference on Antonomous
Agents and Multiagent Systems.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2):100–107.
Jong, N., and Stone, P. 2008. Hierarchical model-based
reinforcement learning: R-max+ MAXQ. In International
Conference on Machine Learning.
Jong, N. 2008. The utility of temporal abstraction in
reinforcement learning. In International Conference on
Antonomous Agents and Multiagent Systems.
Knepper, R.; Tellex, S.; Li, A.; Roy, N.; and Rus, D. 2013.
Single assembly robot in search of human partner: Versatile
grounded language generation. In ACM/IEEE International
Conference on Human-Robot Interaction Workshop on Col-
laborative Manipulation.

Konidaris, G. 2016. Constructing abstraction hierarchies
using a skill-symbol loop. In International Joint Conference
on Artificial Intelligence.
LaValle, S. M., and Kuffner, J. J. 2001. Randomized kin-
odynamic planning. The International Journal of Robotics
Research 20(5):378–400.
MacGlashan, J.; Babeş-Vroman, M.; desJardins, M.;
Littman, M. L.; Muresan, S.; Squire, S.; Tellex, S.; Aru-
mugam, D.; and Yang, L. 2015. Grounding English com-
mands to reward functions. In Robotics: Science and Sys-
tems.
Marthi, B.; Russell, S. J.; and Wolfe, J. 2008. Angelic hierar-
chical planning: Optimal and online algorithms. In Interna-
tional Conference on Automated Planning and Scheduling.
McGovern, A.; Sutton, R. S.; and Fagg, A. H. 1997. Roles of
macro-actions in accelerating reinforcement learning. Grace
Hopper Celebration of Women in Computing 1317.
McMahan, H.; Likhachev, M.; and Gordon, G. 2005.
Bounded real-time dynamic programming: RTDP with
monotone upper bounds and performance guarantees. In In-
ternational Conference on Machine Learning.
Nejati, N.; Langley, P.; and Konik, T. 2006. Learning hier-
archical task networks by observation. In Proceedings of the
23rd International Conference on Machine Learning.
Quigley, M.; Faust, J.; Foote, T.; and Leibs, J. 2009. Ros: an
open-source robot operating system. In IEEE International
Conference on Robotics and Automation Workshop on Open
Source Software.
Sutton, R.; Precup, D.; and Singh, S. 1999. Between MDPs
and semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial Intelligence 112(1):181–
211.

