
Modeling and Solving Human-Robot Collaborative
Tasks Using POMDPs

Nakul Gopalan
Brown University

Email: ngopalan@cs.brown.edu

Stefanie Tellex
Brown University

Email: stefie10@cs.brown.edu

Abstract—Robots have helped in the automation of repetitive
tasks. However, they have limited roles as co-workers or assistants
to humans because of their limited sensing and perception
abilities, which in turn leads to limited inference capabilities.
To help with a task a robot can learn to infer its human user’s
state in a process, which is hidden information. This inference
is multimodal and over a large set of observations. Previous
dialogue modeling work [22] has framed collaborative tasks, but
they do not consider physical state-action spaces. In this work
we first model a joint task between a human and a robot as a
POMDP [7] with turn taking and common goals. Next we present
a POMDP solver capable of handling large state spaces and an
infinite number of observations to perform multimodal inference.
We compare this POMDP solver with other state of the art
POMDP solvers. Further we used this solver for the collaborative
task of changing a child’s diaper on a robotic platform.

I. INTRODUCTION

In most robotics applications, robots either solve tasks in
isolation with almost full autonomy like self driving cars
[21] and vacuuming robots, or under strict human control
like unmanned flights and bomb disposal robots. The need
for robots to solve tasks with humans is increasing over the
years, from automated telephone services [22], to robots for
elderly care [12]. The problem of robots solving tasks with
humans is complicated not only because of limited sensing
abilities of the robots when compared to humans, but also
because of difficulties in modeling turn taking interactions that
come naturally to humans [2]. We want to model and solve
joint tasks between a human and a robot partner. However, in
most of the robotics examples above, the robot and human
do not have a joint space of actions and hence are not
genuinely collaborative. Dialogue modeling applications [22],
which do have a joint action space, do not deal with the
physical space of actions, where the human and the agent can
change the state of the world, making their models insufficient.
For example both humans and robots can move objects in
real world which cannot be expressed using dialogue models.
Command understanding works [5, 19] have modeled robot
tasks directed by natural language commands, however the
information gathering action, i.e., questioning by the robot to
solve a task more efficiently is not addressed in these works.

We chose the task of childcare as an example collaborative
task, where a robot helps a human partner change a child’s
diaper. The robot deals with uncertainties of two kinds:
imperfect physical sensing, and private goals of the human
user about the task at hand. The imperfect physical sensing
and perception is because robots cannot sense or perceive the

Figure 1. Robot handing a diaper to a human partner during the collaborative
diaper change scenario.

exact state of the world using current sensors. For example
the robot cannot discern if the child has a rash, or if the
table is dirty. The robot also cannot observe the hidden goals
of the human partner. We model the subgoals and the final
goals of the human user as the hidden mental state of the
human user. The mental state attributes are not visible to the
robot agent, but it can observe them from the human user’s
speech acts or gestures. Such a problem where the agent does
not know the exact state of the world can be modeled as a
Partially Observable Markov Decision Process (POMDP) [7].
In our domain it is possible to have a large state space and a
large set of input observations because of speech and gestures.
Traditional POMDP solvers like [14] can not deal with such
large state spaces and modern POMDP solvers like [17] and
[6] are not sufficient because they either can not handle a large
observation set or because they need designed features that are
domain specific. We need a general POMDP solver that can
solve domains large in both state space and observation space
and can generate actions real time for robotics applications.

Our contribution in this work is to first model the human
- robot joint task problem as a two agent POMDP problem.
Further to solve such a model we develop our own POMDP
solver that can work in domains with large state spaces
and large observations sets. We compare our solver to other
POMDP solvers in simulation. To prove the efficacy of our
solver we run it real time on a robot to solve the cooperative
task of diaper changing.

II. RELATED WORK

The area of robot interaction with humans as coworkers
has received considerable interest in the recent years. Early
work includes a robotic museum tour guide [1] and a nursing
home robot [12]. Doshi and Roy [3] demonstrated a robotic

wheelchair that learns dialogue models of its users. In [12]
and [3] only the robot is allowed to change the state of
the physical world. Moreover, their observations were only
keywords resulting in small observation sets in these domains.
We want to use more available observations to be able to
follow dialogues, and gestures.

Recently there has been work in the areas of command
understanding by robots [5, 11, 19]. Command understanding
scenario allows robots to help humans when the tasks are
straightforward and the domain does not have hidden state
variables due to perception or not knowing human’s intentions.
The POMDP formulation allows us to deal with hidden
information by asking questions. Tellex et al. [20] do look at
question asking by collaborative robots, however these agents
are formulating questions when a failure condition is met, and
not for the purposes of exploration and finding the true state
of the world, as is needed in our collaborative scenario.

The area most related to our problem is that of automated
dialogue machines modeled using POMDPs [22]. The dialogue
POMDPs have large state spaces based on a user’s goal and
conversation history. Young et al. [22] argue that the state
space of a dialogue model is too large to be solved using
conventional exact [7] or approximation based solvers [14].
General methods of solving a dialogue model POMDP involve
planning over a summarized belief MDP by using methods
like value iteration, Monte Carlo simulations or Natural Actor
Critic [13]. There have been efforts made previously to use
dialog models for collaborative tasks between humans and
robots [10], however these methods do not take into account
the joint physical state of the world while modeling human and
robot actions, which makes them insufficient for our tasks. For
example in our domain both the human partner and the robot
can move the same objects. If the human changes the state
of the world by moving an object in the joint state space the
robot will take into account the new physical state of the world
before choosing the next action, which would not be possible
without physical state attributes.

III. BACKGROUND

We first describe POMDPs which have been used previously
to model tasks with hidden state information. Then we discuss
state of the art methods to solve POMDPs.

POMDPs model planning problems where the agent cannot
directly observe its state, but receives noisy observations about
it. Further, the agent seeks to minimize the cost to solve
a given task [7, 18]. Formally a POMDP is defined as a
tuple {S,A, T,R,Ω, O} [7]. S is the finite set of states
the world can take, and A is the set of actions the agent
can perform. The transition function T : S × A → Π(S)
gives the probability distribution of next states Π(S) given a
state and action performed on that state. The reward function
R : S×A→ R returns rewards for a given state of the world
and an action performed by the agent in that state. Ω is the
set of observations in the domain. The observation function
O : S × A → Π(Ω) describes the probability distribution
of an observation given an action and a next state reached

by performing that action. Given a POMDP the agent must
choose an optimal policy to solve the task.

In a POMDP domain the agent takes actions without perfect
information about the current state. However, the agent has
a distribution over possible states S, i.e., a belief state b.
As the agent takes an action a in the domain, it receives
observation o from the world, which is used to update the

belief state b′(s′) =
O(o|s′,a)

∑
s∈S

T (s′|a,s)b(s)∑
s′∈S

O(o|s′,a)
∑
s∈S

T (s′|a,s)b(s) , where b′(s′)

is the updated probability of being in state s′ after taking
the action a from s, and O(o|s′, a) is the probability of
receiving an observation o from next state s′ with action a.
The probability distribution b over states can be expressed as
a state of an MDP over belief states called a belief MDP. A
policy π(s, a) : S → A returns an action for a given state,
or in our case a belief state. A belief MDP planner finds an
optimal policy π∗(b, a) that maximizes the expected sum of
rewards or the value function V π(b,a)(b) = E(

∑
tR(bt, at)).

POMDP planning is PSPACE-complete [15]. Next we briefly
discuss a few state of the art POMDP planners.

A. Point Based Value Iteration (PBVI)

Traditional approximation based POMDP planners like
PBVI [14] sample the high dimensional belief space and
perform backups similar to value iteration to solve for a policy.
The time complexity of these solvers is cubic in the number of
states which is impractical. For example solving our childcare
domain with 14 states takes more than ten minutes.

B. Natural Belief Critic (NBC)

The extension of Natural Actor Critic (NAC) [13] to
POMDPs called Natural Belief Critic (NBC) have been used to
solve dialogue POMDPs [6]. NBC is a policy gradient method
that learns policy parameters for a stochastic policy π(a|θ, b),
where π(a|θ, b) is the probability of taking action a given a
belief point b and policy parameters θ. The policy parameters
are learned over a mapped feature space Φa(b). NBC needs
belief space’s features with respect to the actions being chosen.
Designing features is not trivial and requires encoding domain
specific information to the learning algorithm. We compare the
performance of our solvers against NBC as a baseline.

C. Partially Observable Monte-Carlo Planning (POMCP)

Our human-robot domain has a large state space,hence we
look towards Monte Carlo Tree search (MCTS) based planners
which have solved problems with large state spaces in domains
like Go [4]. POMCP is an extension of MCTS by Silver and
Veness [17]. It uses a generative model to sample next state,
reward and observation given a state and an action. POMCP
uses an unweighted particle filter to represent the belief state
and its Bayesian update, which allows it to plan rapidly in large
state spaces. In this particle filter states function as particles.
POMCP uses rejection sampling in its particle filter update to
recompute the belief state, where the observation produced
in the real world is matched to the observations produced
by the generative model. However, real world observations

gt

ht

ut

ot rtat

gt+0.5

ht+0.5

ut+0.5

ot+0.5 rt+0.5at+0.5

st+0.5st

ct

dt

ct+0.5

dt+0.5

gt+1

ht+1

ut+1

ot+1 rt+1at+1

st+1

ct+1

dt+1

Time step t Time step t + 1

Figure 2. Factored representation of a human-robot POMDP model, where s is the state of the world. State s consists of g which is the human’s goal, u
the current human intention or action, h the history of actions, d the partially visible physical state of the world and c the turn counter, which keeps track of
whether this is human or a robot turn. An action a at time t by the robot changes the state of the world to a temporary state s0.5 where the human partner
chooses their action u to get to next state s′, while producing observation ot+1 and reward rt+1. Visible factors are shaded in the above figure.

are a diverse and large set and might produce observations
missing completely from our generative model. When a novel
observation is seen POMCP gets lost and performs random
planning, rendering it useless to real world applications with
observation spaces including gestures and speech. We address
this issue by using Likelihood Weighted Sampling instead of
Rejection as described in Section V. Next we discuss the
POMDP model developed for the human robot joint task.

IV. HUMAN ROBOT JOINT TASK POMDP MODEL

We model the collaborative tasks as a two agent problem.
Both the human and the robot agent change the state of the
world to move the task forward. The agents take turns one
after the other till the task is complete. As the robot agent
does not observe the complete state of the world, the problem
is formulated as a two agent POMDP.

The human robot POMDP state is modeled as a combination
of the physical states of the world and the human partner’s
mental state. The physical state of the world consists of
physical objects and their attributes, like location. The mental
state of the human partner is defined using the history of
the actions performed, human’s goal, current human action
being taken. In our problem an example of an attribute in the
physical world hidden to the robot is a rash present on a baby,
which would also affect the human partner’s mental state and
is hidden from the robot. Moreover, the human mental state
is also tracking actions that have been performed previously
with respect to the human partner’s goal.

The POMDP action set consists of the physical actions that
the robot can perform. The actions are performed by taking
turns, where the robot performs an action and waits for the
human to perform an action and return observations in speech
and gestures. We need a joint action transition function that
combines both actions taken. For this transition function we
assume that the human is solving this process using an MDP
given by 〈Sh, Uh, Th, Rh〉, where Sh is the human’s state when
solving the task, Th is the transition function, Rh is the reward

that the human assumes for the task, which might be available
only on goal completion and Uh is the human action set. Sh
can be factored into human partner’s goal Gh, and history of
the task Hh which tracks the progress made towards the goal,
Dh which is the physical state of the world, which might not
be completely visible to the agent. This human MDP can be
converted to a joint POMDP. For this the robot’s POMDP state
is now defined as Sr, the robot’s state, i.e. pose and location
and all the hidden and visible states creating Sh, the hidden
human actions Uh are hidden variables, which are observed
through observations O. We include a turn taking variable C,
a binary counter that flips every turn. Most of these variables
apart from the physical state and the turn taking variable are
present in the dialogue models presented in POMDP dialogue
modeling literature [22].A factored representation of the state
is given in Fig. 2. The figure also describes the dependencies
of different variables, which allows an efficient belief update.

A time step consists of two turns, one robot and one human.
The robot action set is Ar and its transition function is Tr.
The robot acts first on a given state s, giving us a temporary
state s0.5. The human partner is free to choose any action
on s0.5, i.e., u ∼ Π(s0.5) changing the state of the world
to s′. Fig. 2 describes state transition in the human-robot
POMDP model. The net transition function T : Th × Tr =
P (s′|s, ac) =

∑
s0.5∈SP (s0.5|s, a) × P (s′|s0.5, u), where the

probability over temporary states possible is marginalized
to get P (s′|s, ac), and ac is the combined action from a
and u. The observation function is dependent on the human
partner’s mental state during the action and can be defined
as Oh : P (oh|s, u) and is available after the human action.
The observation received at the after just the robot action in
state s0.5 is always a null observation, Or : P (or|s0.5, u) = 1,
as the human has not returned any observations yet. Since
the belief update will take into account the observations in
both turn the null observation are marginalized as Oc : Oh=
P (oc|s′, ac)=P (oh|s′, u), where net observation of the human
partner’s actions and the null action of the state after the

b b b

B={{1,0.3},{20,0.5},{13,0.2}}

B={{3,1}}
o1

a1

o2

oK

oK−1

B = {{12,0.5},

a2

o3 o6
B = {{9,0.3}}

a1
a1

a1
a2

a2

r=2

N=8

V=0.9

a2

h

ha2

ha2oKB = {{9,1}}

N=5

V=1.7

N=1

V=2.0

N=2

V=1.5

N=4

V=1.5

N=1

V=2.0
N=0

V=0.0

N=1

V=1.0

r=1

N=1

V=1.0

N=1

V=2.0

r=2r=1

o4o8

N=3

V=0.7

N=1

V=0.0

r=0

N=2
V=−1

N=1
V=−1

N=0

V=0.0

r=−1

{7,0.5}}

Figure 3. LBLWPOMCP simulation example after a series of simulations
from the root node. The circled action a2 is chosen because of its higher value
and is performed in the real world, and observation oK is observed. The new
root after the real world action and observation is ha2oK . Re-planning is
done from ha2oK and the rest of the tree is pruned. In this figure K is
the maximum number of observation branches allowed. The belief state in
LBLWPOMCP is estimated using a weighted particle filter unlike POMCP.

robot’s action are combined to get observation oc, and its
probability can be given with respect to the next state s′ and
combined action ac taken. The reward function for the robot
is a function of the human’s reward function: Rr = f(Rh).
Hence a human only MDP can be converted into a human-
robot POMDP model, along with the generation of a new
transition, reward and observation function. We described the
human-robot POMDP that needs to be solved by the robot
to perform optimal actions and get to the goal state that the
human has decided. Next we look at improvements made to
POMCP that would allow this problem to solved, after which
we compare the performance of all these algorithms.

V. LIMITED BRANCHING LIKELIHOOD WEIGHTED
POMCP

We will first describe the functioning of POMCP briefly
and point out its unsuitability for planning in real world
scenarios. MCTS based planners use a generative model to
sample the set of next states and their next states for a limited
horizon, and exact planning is done over this smaller look
ahead tree. These planners generally use Upper Confidence
Bound 1 (UCB1) applied to Trees (UCT) algorithm [9] for
exploring within the look-ahead tree. However in the case
of POMDPs, since states are not visible, the look ahead
tree nodes are made up of histories [17] which are a set of
actions and observations, i.e, ht = {a1, o1,at, ot}. Hence
a history node is an observation node, which is reached by
taking a series of actions and observations from the root
node. Furthermore, POMCP approximates the belief state and
the Bayesian updates of a belief state using an unweighted
particle filter. When planning starts, the root node calculates

the best action a using the UCB1 bound. Next a state particle
is sampled from the root node and the generative model is
queried with the state action pair for next state, reward and
observation: (s′, r, o) ∼ G(s, a). If observation, o, is a child
node of the root and action, ha, we add the next state particle
s′ to the hao node and continue the simulation from this node.
Nodes reached return the discounted sum of returns towards
their parents, updating the values of actions.

After N simulations, the action with the highest value is
performed and in turn an observation is returned to the planner.
Re-planning is performed by updating the root node using
Rejection sampling [16]. For the Rejection sampling, particles
are randomly sampled from the root node and the simulator
is given the chosen state particle with the real world action.
The simulator G returns an observation and next state and
if the real world observation was equal to the observation
returned, the state particle is added to the updated node. This
continues until the updated node has N particles. Observations
in our POMDP are sentences spoken and gestures performed.
Rejection sampling is not practical since the probability of
seeing the same sentence or gesture again is very small.
Further time taken to sample the same observation might
be too large to plan real time. POMCP performs random
actions once a novel observation is seen which leads to poor
performance.

We use Likelihood Weighted sampling [16] during the
updates to be able to solve our POMDPs. Further, with a
large observation space the observations would not be repeated
when solving the POMDP. Hence, we would not actually get
a structured tree from the root node, but links going from the
root directly to rollouts repeatedly leading to "tassels". We fix
this in our solver by using limited branching on observations.
The detailed algorithm is given in Algorithm 1.

For likelihood weighted sampling we find the probability
of real world observations based on the states being returned
by the simulator P (or|s′, ar), where or is the real world
observation, ar is the real world action performed and s′ is the
state returned by the generative model. We weight our particles
with this probability and resample N times. This can be seen
in the GENERATEBELIEFSET procedure in Algorithm 1. The
history nodes have a multiset of weighted particles Bt of size
N , Bit = {s, w}, where state particle Bist = s ∈ S with weight
Biwt = w, and 1 ≤ i ≤ N . The belief state for a history ht

is approximated as B(s, h) =P (st = s|ht = h) = 1
N

N∑
n=1

δ(s=

Bnst)×Bnwt≈b(s). Likelihood weighting converges in the limit
to the exact value as well as Rejection sampling, hence real
world observations can now be tackled. We are still left with
the problem of getting "tassels" instead of an MC tree with
reliable values where nodes have been visited more than once.

We were inspired by Sparse sampling [8] to solve this
problem. Sparse sampling samples the transition function for
each action and adds a limited number of next states as nodes
per action to perform value iteration. We extend this to ob-
servations. During the "SIMULATE" stage in Algorithm 1 we
add only K observations as the child nodes to an action. When

Algorithm 1 Limited Branching Likelihood Weighted Partially Observable Monte Carlo Planner

procedure GENERATEBELIEFSET(h, B(h,w), a, o)
B(hao,w′)← (∅, ∅)
for i← 1, n do

w = 1
s ∼ B(h,w)
(s′, o′, r) ∼ G(s, a)
B(hao,w′)← B(hao,w′) ∪ ({s′},P(o|s′, a))

end for
return B(hao,w′)
end procedure

procedure SEARCH(h)
for i← 1, n do

if h = empty then
s ∼ I

else
s ∼ B(h,w)

end if
SIMULATE(s,h, depth = 0,∅,∅)

end for
return argmax

α
V (h, α)

end procedure

procedure ROLLOUT(s,h, depth,′o,′a)
if γdepth < ε ∨ isTerminal(′o) then

return 0
end if
a ∼ πRollout(h, .)

(s′, o′, r) ∼ G(s, a)
return r + γ.ROLLOUT(s′,hao, depth+ 1,o′,a)

end procedure

procedure SIMULATE(s,h, depth, ′o, ′a)
if γdepth < ε ∨ isTerminal(′o) then

return 0
end if
if N(h) = Ninit(h) then

for all a ∈ A do
T (ha)← (Ninit(ha), Vinit(ha), ∅)

end for
return ROLLOUT(s,h, depth,o′,a)

end if
a← argmax

α
V (h, α) + c

√
logN(h)
logN(hα)

(s′, o, r) ∼ G(s, a)
if ‖K(ha)‖ < κ then

K(ha)← K(ha) ∪ o
else if o /∈ K(ha) then

o ∼ (K(ha), s′)
end if
R← r + γ.SIMULATE(s′,hao, depth+ 1,o′,a)
B(h,w)← B(h,w) ∪ ({s},P(′o|s,′ a))
N(h)← N(h) + 1
N(ha)← N(ha) + 1

V (ha)← V (ha) + R−V (ha)
N(ha)

return R
end procedure

a new observation is seen, instead of allocating it another
child node, we sample from the current set of observations
and put the next state particle in that node. The observation
node is chosen according to Likelihood Weighting using the
observation function. We call our solver Limited Branching
Likelihood Weighting POMCP (LBLWPOMCP). Fig.3 shows
an example LBLWPOMCP tree when planning. We present
results for POMCP, NAC and LBLWPOMCP next.

VI. SIMULATION RESULTS

We describe the results over three domains: Rocksample
Childcare domain, and Confirmation based Childcare domain.

A. Rocksample

Rocksample is described in Silver and Veness [17], and
has a state space size of 247, 808. The domain has an agent
sampling rocks for minerals and whether the rock is good or
bad for sampling is hidden information. There are 11 rocks and
apart from checking all actions result in a null observation.
For further details refer [17]. We added more observations
by repeating each observation multiple times, as is the case
with speech or gesture observations with noise. We can see
that LBLWPOMCP performs consistent, while POMCP does
bad as soon as the observations are increased. This task is

4 × 4
x
 Observations

0 1 2 3 4 5 6

A
v
e
ra

g
e
 R

e
w

a
rd

 a
ft
e
r

1
0
0
0
 r

u
n
s

-4

-2

0

2

4

6

8

POMCP 128
POMCP 512
LBLWPOMCP 128
LBLWPOMCP 512

Figure 4. Results of the Rocksample domain: increasing number of
observations in log scale vs reward.

computationally challenging for NBC because the belief space
is too large, sparse and features are not obvious.

B. Childcare Domain

The scenario of the problem is inspired from a child care
task. The human user’s goal is to change a baby’s diaper.
There is a probability of 0.5 that the baby has a rash attribute,
which has to be solved by applying ointment. The human-robot
POMDP for this domain has just 3 actions for the robot and 14
reachable states. The actions for the robot in this domain are
null, get diaper, get ointment. The human user is assumed to

56 × 4
x
 Observations

0 1 2 3 4 5 6

A
v
e
ra

g
e
 R

e
w

a
rd

 a
ft
e
r

1
0
0
0
 r

u
n
s

-4.4

-4.2

-4

-3.8

-3.6

-3.4

-3.2

-3

-2.8

-2.6

-2.4

LBLWPOMCP 64
NBC Good
POMCP 64
NBC Bad
LBLWPOMCP 32

Figure 5. Results of the Childcare domain: increasing number of observations
in log scale vs cost to solve the task.

return an observation after each human action. Human actions
in this domain correspond to the human changing the baby’s
actual diaper, or applying the ointment that the robot passed.
The observations returned by the human are noisy and indicate
the wrong state with a probability 0.2. The rewards are uniform
negative for each action performed.

In Fig. 5 we compare the different solvers in this domain by
increasing the number of observations present in the generative
model and keeping the number of particles constant at 64.
As we see increasing the number of training observations
does not change the performance of LBLWPOMCP, however
POMCP sees a drastic reduction in cumulative rewards. We
are comparing LBLWPOMCP with NBC based on the quality
of features used by NBC. NBC’s good run have summed up
beliefs of human mental state attributes and distance from
clusters of belief points over multiple runs. For the bad runs
we have only the cluster features, and this run performs the
worst. We see that NBC has a strong feature dependence where
as LBLWPOMCP can still function with fewer particles.

We also test the same domain with a sentence based corpus
of observations. The corpus has about 150 words and 35
sentences, where each sentence talks about the task that
the human is doing while changing a child’s diaper. The
observation probability of a sentence is calculated using a
simple Unigram model. The results of the corpus are on
Table I. Our solver does better than NAC and POMCP, and as
well as PBVI, while having the shortest training time (in ms).

We run the same domain on our Baxter robot to solve the
task using speech inputs as shown in Fig. 1 as well as the video
attachment. After an action is performed the human speech and
object locations are returned as an observation and planning
is performed. The robot passes the diaper or ointment as per
the requirements of the human. Hence the solver performs real
time in a practical scenario.

C. Confirmation based Childcare Domain

This domain has the same physical states as the Childcare
domain, but the observations are not narrated by the human,
hence the robot has to ask if the ointment is needed. If the
agent chooses to get or not get the ointment without asking it
is penalized with a negative reward of −10. The structure of

Table I
RESULT OF TRAINING A VOCABULARY MODEL WITH 35 SENTENCE AS

OBSERVATIONS OVER 10 RUNS.

Solvers Avg. Cost 95% CI Avg. Time (ms) 95% CI

PBVI -2.4 0.3036 194666.5 3237.4857
POMCP -4.2 1.5874 45.8 29.0024
LBLWPOMCP -2.4 0.3036 25.2 9.2299
NBC -2.6 0.3036 2504.4 149.34

306 × 4
x
 Observations

0 0.5 1 1.5 2 2.5 3 3.5

A
v
e
ra

g
e
 R

e
w

a
rd

 a
ft
e
r

1
0
0
0
 r

u
n
s

-18

-16

-14

-12

-10

-8

-6

-4

-2 LBLWPOMCP 256
NBC Good
POMCP 256
NBC Bad
LBLWPOMCP 128
LBLWPOMCP 512

Figure 6. Results of the Confirmation based Childcare domain: increasing
number of observations in log scale vs cost to solve the task.

this domain is more in line with the dialogue machines, with
an asking and confirmation before any action. This domain
has 35 states, because of bits tracking agent’s question action.

We can see in Fig. 6 that POMCP with 256 particles
performs poorly with large observations. The good NBC
features in this domain are only summation over physical
states for each hidden state action pair. NBC performs worse
with cluster features in this domain. The bad NBC features
are just cluster based distance features, and do very poorly.
LBLWPOMCP does objectively better than all the solvers and
solves the task real time.

VII. CONCLUSION

Our work formalizes the conversion of a human task into a
human robot joint POMDP. This formalism can be exploited
since we have solvers to tackle the problem of POMDPs.
We compared several solvers for the task of solving such a
POMDP. Since observation space can be huge and continuous
in the real world we needed solvers that could deal with such a
large observation space. We saw that LBLWPOMCP is capable
of solving large POMDP problems like POMCP but even with
a large observation space, which allows for more complex real
world domains. On the other hand NBC learns policies which
might be more convenient if the features for a given domain
are obvious. However, NBC can’t solve domains that are too
large because the belief state representation of such domains
is too large, which makes them computationally impractical.

Hence using this work the robot can solve tasks with
the human agent in large state spaces with a large set of
observations. In the future we want to test these solvers on
larger domains with observations from gestures along with
speech.

REFERENCES

[1] Wolfram Burgard, Armin B. Cremers, Dieter Fox, Dirk
Hähnel, Gerhard Lakemeyer, Dirk Schulz, Walter Steiner,
and Sebastian Thrun. Experiences with an interactive
museum tour-guide robot. Artif. Intell., 1999.

[2] Crystal Chao. Timing multimodal turn-taking for
human-robot cooperation. In Proceedings of the 14th
ACM International Conference on Multimodal Inter-
action, ICMI ’12, pages 309–312, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1467-1. doi:
10.1145/2388676.2388744. URL http://doi.acm.org/10.
1145/2388676.2388744.

[3] Finale Doshi and Nicholas Roy. Spoken language inter-
action with model uncertainty: an adaptive human-robot
interaction system. Connect. Sci., 2008.

[4] Sylvain Gelly and David Silver. Combining online and
offline knowledge in uct. In Proceedings of the 24th
international conference on Machine learning, pages
273–280. ACM, 2007.

[5] Thomas M. Howard, Stefanie Tellex, and Nicholas Roy.
A natural language planner interface for mobile manip-
ulators.

[6] Filip Jurčíček, Blaise Thomson, and Steve Young. Nat-
ural actor and belief critic: Reinforcement algorithm
for learning parameters of dialogue systems modelled
as pomdps. ACM Trans. Speech Lang. Process., 7
(3):6:1–6:26, June 2011. ISSN 1550-4875. doi:
10.1145/1966407.1966411. URL http://doi.acm.org/10.
1145/1966407.1966411.

[7] Leslie Pack Kaelbling, Michael L. Littman, and An-
thony R. Cassandra. Planning and acting in partially
observable stochastic domains. Artificial Intelligence,
1998.

[8] Michael Kearns, Yishay Mansour, and Andrew Y Ng. A
sparse sampling algorithm for near-optimal planning in
large markov decision processes. Machine Learning, 49
(2-3):193–208, 2002.

[9] Levente Kocsis and Csaba Szepesvári. Bandit based
monte-carlo planning. In Machine Learning: ECML
2006, pages 282–293. Springer, 2006.

[10] Lorenzo Lucignano, Francesco Cutugno, Silvia Rossi,
and Alberto Finzi. A dialogue system for multimodal
human-robot interaction. In Proceedings of the 15th
ACM on International Conference on Multimodal In-
teraction, ICMI ’13, pages 197–204, New York, NY,
USA, 2013. ACM. ISBN 978-1-4503-2129-7. doi:
10.1145/2522848.2522873. URL http://doi.acm.org/10.
1145/2522848.2522873.

[11] Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer, Di-
eter Fox, and Cynthia Matuszek. Learning to parse
natural language commands to a robot control system.
In in Proc. of the 13th International Symposium on
Experimental Robotics (ISER, 2012.

[12] Michael Montemerlo, Joelle Pineau, Nicholas Roy, Se-
bastian Thrun, and Vandi Verma. Experiences with a
mobile robotic guide for the elderly. In AAAI/IAAI, 2002.

[13] Jan Peters and Stefan Schaal. Natural actor-critic. Neu-
rocomputing, 71(7–9):1180 – 1190, 2008. ISSN 0925-
2312. doi: http://dx.doi.org/10.1016/j.neucom.2007.11.
026. URL http://www.sciencedirect.com/science/article/
pii/S0925231208000532. Progress in Modeling, Theory,
and Application of Computational Intelligenc 15th Eu-
ropean Symposium on Artificial Neural Networks 2007
15th European Symposium on Artificial Neural Networks
2007.

[14] Joelle Pineau, Geoff Gordon, and Sebastian Thrun. Point-
based value iteration: An anytime algorithm for pomdps,
2003.

[15] Joelle Pineau, Geoffrey J. Gordon, and Sebastian
Thrun. Anytime point-based approximations for large
pomdps. J. Artif. Intell. Res. (JAIR), 27:335–380, 2006.
URL http://dblp.uni-trier.de/db/journals/jair/jair27.html#
PineauGT06.

[16] Stuart J. Russell and Peter Norvig. Artificial Intelligence:
A Modern Approach. Pearson Education, 2 edition, 2003.
ISBN 0137903952.

[17] David Silver and Joel Veness. Monte-carlo planning in
large pomdps. In In Advances in Neural Information
Processing Systems 23, pages 2164–2172, 2010.

[18] Edward Jay Sondik. The optimal control of partially
observable markov processes. Technical report, DTIC
Document, 1971.

[19] Stefanie Tellex, Thomas Kollar, Steven Dickerson,
Matthew R. Walter, Ashis Gopal Banerjee, Seth Teller,
and Nicholas Roy. Understanding natural language
commands for robotic navigation and mobile manipu-
lation. In In Proceedings of the National Conference on
Artificial Intelligence, 2011.

[20] Stefanie Tellex, Ross Knepper, Adrian Li, Daniela Rus,
and Nicholas Roy. Asking for help using inverse se-
mantics. Proceedings of Robotics: Science and Systems,
Berkeley, USA, 2014.

[21] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp,
David Stavens, Andrei Aron, James Diebel, Philip Fong,
John Gale, Morgan Halpenny, Gabriel Hoffmann, Kenny
Lau, Celia Oakley, Mark Palatucci, Vaughan Pratt, Pas-
cal Stang, Sven Strohband, Cedric Dupont, Lars-Erik
Jendrossek, Christian Koelen, Charles Markey, Carlo
Rummel, Joe van Niekerk, Eric Jensen, Philippe Alessan-
drini, Gary Bradski, Bob Davies, Scott Ettinger, Adrian
Kaehler, Ara Nefian, and Pamela Mahoney. Stanley:
The robot that won the darpa grand challenge: Research
articles. J. Robot. Syst., 2006.

[22] Steve Young, Milica Gasic, Blaise Thomson, and Ja-
son D. Williams. Pomdp-based statistical spoken dialog
systems: A review. Proceedings of the IEEE, 2013.

