
Feedback Error Learning for Rhythmic Motor Primitives

Nakul Gopalan1, Marc Peter Deisenroth1, and Jan Peters1,2

Abstract— Rhythmic motor primitives can be used to learn a
variety of oscillatory behaviors from demonstrations or reward
signals, e.g., hopping, walking, running and ball-bouncing.
However, frequently, such rhythmic motor primitives lead to
failures unless a stabilizing controller ensures their function-
ality, e.g., a balance controller for a walking gait. As an ideal
oscillatory behavior requires the stabilizing controller only for
exceptions, e.g., to prevent failures, we devise an online learn-
ing approach that reduces the dependence on the stabilizing
controller. Inspired by related approaches in model learning,
we employ the stabilizing controller’s output as a feedback
error learning signal for adapting the gait. We demonstrate
the resulting approach in two scenarios: a rhythmic arm’s
movements and gait adaptation of an underactuated biped.

I. INTRODUCTION

Learning rhythmic behavior is an essential motor skill
acquisition problem as a large number of skills ranging
from ball paddling [7], drumming [13], walking and running
[10], [14] are generically rhythmic. As suggested by Ijspeert
[5], parametrized dynamical systems can be used to data-
efficiently model and generate trajectories using supervised
learning methods. Subsequently, reinforcement learning tech-
niques [7], [12] can be used for improving the behavior with
respect to a cost function.

However, many behaviors consist of two components, an
oscillatory movement in several parts of the body (e.g., the
legs or arms) and a stabilizing controller in the remainder of
the body (e.g., the torso and head during locomotion or the
hands while carrying a tablet). In such tasks, a supervised
learning approach for rhythmic motor primitives may yield
low-performance solutions if it does not take the stabilizing
controller into account. Rhythmic Motor Primitives [5] that
minimize the stabilizing control effort are preferable as they
allow for weaker motors, less electronics, and lower sampling
rates, while keeping desired behavior attainable. Hence, it is
essential to learn rhythmic behavior (e.g., a gait) such that
the stabilizing controller (e.g., the torso balance controller)
is only needed in unforeseen occasions, as the behavior oth-
erwise will be already inherently stable. Nevertheless, most
common approaches [5], [7] ignore this additional constraint
of learning the stabilizing controller’s behavior, despite the
fact that important tasks, such as hopping, walking, and
running of both robot or animals, all require a balance
controller in addition to their rhythmic behavior.

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/2007–2013)
under grant agreement no. 270327.
1Dept. of Computer Science, Technische Universität Darmstadt, Germany.
2Max Planck Institute for Intelligent Systems, Tübingen, Germany.
{gopalan, marc, peters}@ias.tu-darmstadt.de

Despite that the problem of optimizing rhythmic motor
primitives for stabilizing control effort reduction appears to
have a reinforcement learning based solution, we can devise a
supervised learning approach to this problem. To accomplish
the goal of minimizing the control effort caused by the
rhythmic motor primitives’ output, we update their parame-
ters using the control signal of the stabilizing controller as
an error signal. As this control signal corresponds to the
feedback error, our novel approach for improving gaits can
be seen as a form of Feedback Error Learning.

Feedback error learning was introduced by Kawato [6]
in the context of learning inverse dynamics models for
model-based control of a fixed trajectory, see Fig. 1(a). In
contrast, our approach adapts the trajectory generator (i.e.,
the rhythmic motor primitives) while assuming an existing
control law, see Fig. 1(b).

Such feedback error learning of rhythmic motor primitives
has substantial advantages over both imitation and rein-
forcement learning. Unlike classical imitation learning, our
method does not require a well-demonstrated behavior where
the balance controller already remains silent; instead, our
method can be used in conjunction with a (potentially bad)
demonstration to initialize the rhythmic motor primitives.
Nevertheless, our learning method still results in a supervised
learning problem formulation, and is hence a generically
easier problem than reinforcement learning. Furthermore,
learning can be achieved online and on-policy. As a result,
our learning method may even be used to adapt a behavior
to a non-stationary environment, e.g., adapt a walking gait
to a novel terrain.

We evaluate the core insight of feedback error learning
and the resulting architecture in two scenarios: a toy problem
with a two- link robot arm, and a planar biped walking robot
with a torso. In the first simulation, the robot arm moves the
shoulder along a rhythmic trajectory while it is supposed
to keep the second link upright. In the second scenario, a
planar biped walking robot with a torso has to accomplish a
gait while the torso has to remain at a pre-specified angle.
Here, the gait is adapted to minimize the balance control
law’s efforts. Both evaluations demonstrate the applicability
of this novel way of learning rhythmic behavior.

II. FEEDBACK ERROR LEARNING OF
RHYTHMIC MOTOR PRIMITIVES

The goal of this paper is to learn rhythmic or oscillatory
motions of a mechanical system such that the control effort
of an additional stabilizing control law is minimized. To
achieve this goal, we require several components. Firstly,
we need a parametrized representation of the movement,

which we describe in Section II-A. Secondly, we need to
initialize these primitives from a demonstrated trajectory
using imitation learning, see Section II-B. Thirdly, we need a
control architecture that translates the output of the rhythmic
motor primitives into motor commands, i.e., torques, sent to
the motors of the robot, discussed in Section II-C. Fourthly,
in Section II-D, we determine why and how the feedback
motor command can be used as an error signal. Finally,
we show how to improve the rhythmic motor primitives by
gradient descent feedback error-learning in Section II-E.

A. Representation Behavior with Rhythmic Motor Primitives

Movement primitives [14] are trajectory generators that
allow a trajectory to be described as a dynamical system with
an attractor landscape. This landscape can be modified with
learnable non-linear parameters to fit the desired trajectory.
For a rhythmic action, this dynamical system is a limit cycle.
The equation for the dynamical system can be given by

τ2q̈ = αz(βz(g − q)− τ q̇) + Ψ (x)θ, (1)

where Ψ (x) are the non-linear features dependent on the
state x of a canonical system given by, τ ẋ = Cc. This
canonical system allows the system to be independent of time
which allows us to scale the periodic properties of the system
more easily [14]. The features used throughout this paper are
von Mises basis functions. θ denotes parameters that need to
be learned, i.e., the weights of the basis function. Parameters
αz and βz are timing constants. Time period of the rhythmic
action is denoted by τ . Parameter g is the baseline of
the rhythmic trajectory. In the trajectory generation phase,
Eq. (1) is used. Assuming the weights θ are given, the above
equations are used to generate the second-order derivatives
of the trajectories. The required trajectory is then obtained by
numerical integration of these second-order derivatives [14].
In short, using rhythmic motor primitives we can represent
rhythmic trajectories with an attractor landscape that can be
modulated using non-linear features.

B. Initialize Rhythmic Motor Primitives by Imitation

During the learning phase using Eq. (1) the weights θ are
learned given a demonstrated trajectory consisting of joint
angles qd, joint velocities q̇d and joint accelerations q̈d. To
learn a trajectory we need to learn the weights for the features
Ψ (x), such that the error between the learned and generated
trajectory is minimum. Both the learning and generation
of trajectories can be done using the model in Eq. (1)
for rhythmic motor primitives. Motor primitive learning by
imitation can be achieved by minimizing the squared error

E=
1

2

∑N

k=1

∥∥∥τ2q̈kd−(αz(βz(g−qkd)−τ q̇kd))−Ψ
(
xk
)
θ
∥∥∥2

(2)
with respect to the parameters θ, where q̈d, q̇d, qd are from
the demonstrated trajectory. Both gradient descent and single
step solutions exist [14]. The time period τ of the rhythmic
motion needs to be extracted in advance using methods like
Fourier analysis. The period of the basis functions needs to

be the same as the one of the gait they are modeling. Choos-
ing a dynamical system to model ensures stable, smooth and
differentiable generated trajectories [14]. Due to their ease of
modeling and stability properties, we chose rhythmic motor
primitives to represent and learn the required trajectories.

C. Control Architecture for Feedback Error Learning

To turn the desired trajectories generated by the motor
primitives into actual behaviors, we assume a nonlinear
feedforward control architecture [2]. In this architecture,

u = uff + ufb,

where u is the motor command. It consists of a feedforward
motor command uff, which generates the torques needed for
the desired behavior, and a feedback control law

ufb =KP (qd − q) +KD (q̇d − q̇) , (3)

with positive gains KP and KD to ensure that the behavior
is achieved in the presence of uncertainty and model errors.
By assuming that our robot is a rigid body system, we can
use an inverse dynamics model to generate the feedforward
motor commands [2]

uff = M(q)q̈ + c(q, q̇) + g(q). (4)

Here, q, q̇ and q̈ denote positions, velocities and acceleration,
respectively, M(q) is the inertia matrix, c(q, q̇) denotes
centripetal and Coriolis forces, and g(q), the gravity forces.

D. The Feedback-Error as Learning Signal

Classically, the idea of feedback error learning [6] has
been derived from an inverse dynamics learning perspective
as illustrated in Fig. 1(a). In this case, the model from
Eq. (4) is assumed to be unknown and instead learned
using a parametric representation uff = Φ (qd, q̇d, q̈d)θ,
with basis functions Φ (qd, q̇d, q̈d) defined on desired input
trajectories and weights θ that describe the inverse model
based on the basis functions. Similar to motor primitive
learning from demonstrations as described in Section II-B,
inverse dynamics model learning is achieved by minimizing
the sum of squared errors

E =
1

2

∑N

k=1

∥∥ek∥∥2
=

1

2

∑N

k=1

∥∥∥uk−f
(
qkd , q̇

k
d , q̈

k
d ,θ
)∥∥∥2

(5)

with respect to the parameters θ. If the inverse dynamics
model is precise, the feedforward uff will be error free,
and hence dominant. This results in q̈d ≈ q̈, forcing the
controller ufb to remain dormant, i.e., |ufb| ≈ 0. Otherwise,
the feedback controller will generate torques to make sure
that the output of the system follows the control laws and
gives desired outputs. Kawato [6] realized that the feedback
of a linear control law can be used as an error signal

e = u−Φ (qd, q̇d, q̈d)θ = u− uff = ufb (6)

for inverse dynamics learning where f (qd, q̇d, q̈d,θ) =
Φ (qd, q̇d, q̈d)θ. Hence, in inverse dynamics learning, it is
easy to see that the feedback signal serves as an error.

Controlled
Object

Feedback Controller

ufb

uff

utotal

qd, q̇d, q̈d
Inverse

+

−

+

+
++

q̈d

ufb

Tracking

Model

q, q̇

qd, q̇d

q, q̇

(a) Original feedback error learning.

Trajectories Generator

(Rhythmic Motor Primitives)

Controlled
Object

Feedback Controller
q, q̇

ufb

uff

utotal

qd, q̇d

Inverse

+

−

+

+
++

q̈d

ufb

Track and Stabilize

Model

q, q̇

(b) Modified feedback error learning.

Fig. 1. (a) Original feedback error learning model where an inverse model is being learned using the feedback error and consists only of a tracking
feedback, from [6]. (b) Modified feedback error learning of gaits. The feedback from the the balance controller’s feedback output is used for learning the
gait and not the inverse model, and also the feedback used for learning is not just a tracking feedback but more importantly a stabilizing feedback as well.

In the context of optimizing rhythmic motor primitives by
feedback-error learning, the relationship is more contrived as

f (qd, q̇d, q̈d,θ) = M(qd)q̈d + c(qd, q̇d) + g(qd). (7)

As illustrated in Fig. 1(b), here, we want to learn the motor
primitive generating the desired trajectory. There exist two
kinds of feedback controllers: The feedback controllers that
track the rhythmic trajectory given by

utrack,i = ufb,i =KP,ii
(
qd,i − qi

)
+KD,ii

(
q̇d,i − q̇i

)
,

and, the feedback controllers that act as stabilizing con-
trollers such as

ustabilize,j = ufb,j =KP,jj
(
qd,j − qj

)
+KD,jj

(
−q̇j

)
,

where utrack,i and ustabilize,j represent the tracking feedback
for the ith and the stabilizing feedback for the jth links in
accordance with Eq. (3). The matrices KP and KD are the
positive feedback gain matrices. It can be seen that for the
stabilizing feedback the desired joint angle for stability is
qd,j and the desired joint velocity for stability is 0, such
that the joint remains in the stable position throughout the
rhythmic trajectory.

For learning the rhythmic motor primitive, in a fully
actuated system we realize that ej = ustabilize,j can be used
as an error signal for all stabilizing controllers and ei = 0 for
all other dimensions. However, in underactuated systems the
tracking and stabilizing feedbacks are summed to be given
into a single actuator. Thus, to learn one input trajectory for
underactuated systems we would need to minimize the sum
of the stabilizing and tracking feedbacks. In our simulations,
the robot arm is a fully actuated system and the planar biped
is an underactuated system. In the following paragraphs, we
detail how the basic idea behind feedback error learning can
be transferred to learning of rhythmic motor primitives by
gradient descent.

E. Gradient Descent Feedback Error Learning of Rhythmic
Primitives

For optimizing the cost function in Eq. (5), a common
approach minimizes the squared error with respect to the
parameters θ based on N measurements. The solution can
be obtained by the least squares solution in a single step.
However, if we want to continuously update the model, the

parameters of this model can be optimized by stochastic
gradient descent for an error function by

θh+1=θh−αh∇θE (8)

=θh + αh

∑N

k=1
ek
∂f(qkd, q̇

k
d, q̈

k
d,θh)

∂θh
,

where αh is a learning rate or step size. Stochastic gradient
descent for a convex error is guaranteed to converge to the
optimal solution under mild conditions such as

∑∞
h=1 αh →

∞ and
∑∞

h=1 α
2
h<∞, see [1].

For inverse dynamics learning, such a gradient update
yields the update step

θh+1 = θh + αh

∑N

k=1
uk

fbΦ
(
qkd , q̇

k
d , q̈

k
d

)T
, (9)

which is known as feedback error learning [6]. Learning and
control using feedback error learning for inverse dynamics
is stable under the conditions defined for the gains KP and
KD as

∥∥K2
D

∥∥ >‖KP‖ [11]. Nevertheless, these gains have
to be chosen on trial and error basis initially.

Following the method of feedback error learning, the
feedback error is used to correct the weights of the rhythmic
motor primitives using stochastic gradient descent compara-
ble to Eq. (9) given by

θh+1 = θh + αh

∑N

k=1
uk

fb

∂f(qkd, q̇
k
d, q̈

k
d)

∂θh
,

where the forward torque uff = f(qkd, q̇
k
d, q̈

k
d)and θ are the

weights of the rhythmic motor primitives. This leads by the
application of the chain rule to the weight update rule

θh+1 = θh + αh

∑N

k=1
uk

fb

∂f(qkd, q̇
k
d, q̈

k
d)

∂q̈kd

∂q̈kd
∂θh

. (10)

The derivative ∂f/∂q̈kd of the forward torque are calcu-
lated analytically or using finite differences. We used finite
difference methods to calculate the derivatives ∂q̈kd/∂θh,
because the rhythmic motor primitives in Eq. (1) have a
temporal component that does not allow us to calculate
precise analytical derivatives of ∂q̈kd/∂θh as needed in
Eq. (10). The conditions for stability of both, the stochastic
gradient descent, and that of the feedback error learning
are the same as before. The error minimization condition
in Eq. (10) changes the forward gait qd in the direction of
minimizing the summed feedback of the control laws. The

major modifications to the feedback error learning model is
that we learn trajectories instead of inverse dynamical models
as in the original paper [6], and stabilizing feedback error is
more important for learning than the tracking feedback error.
This causes a slightly different update equation to the weight
vectors of the trajectories. In the next section we analyze two
simulation results using our novel approach to feedback error
learning using Eq. (10).

III. RESULTS

In this section, we describe two simulations used to test
our feedback error learning model. In the first simulation
stable joint trajectory for a two-link robot arm’s upper link
is learned. In the second simulation a biped torso’s balanced
trajectory is learned, while executing the gait.

A. Evaluation on a Two-link Robot Arm

The two-link robot arm served as a toy example for
feedback error learning for rhythmic motor primitives. This
two-link robot arm can also be regarded as a double link
pendulum. The arm had two links and two actuators as shown
in Fig. 2. Each link of the arm weighed 1 kg and measured
1m in length. The lower link of the arm oscillated between
(π/2± π/6) rad, while inverted, i.e., with its mass is above
its pivot. The upper link initially had a random, unknown
feedforward trajectory that is unbalanced. The random and
unstable nature of this initial feedforward trajectory could
lead to the robot arm getting out of balance.

q2 = π/6

q1=π/2−π/6

Fig. 2. Model for the
two-link robot arm in
the balanced state

The period of oscillation for the
lower link was 1 s. The forward trajec-
tory for the lower link was generated
using rhythmic motor primitives [14]
with 10 basis functions. The initial
forward trajectory for the upper link
was chosen by randomly sampling the
weights for the rhythmic motor primi-
tives. These rhythmic motor primitives
also had 10 basis functions. The dy-
namics of the robot arm were taken
from Yoshikawa [15], and the equa-
tions had the same form as Eq.(4). The
sampling frequency for the simulator
was 100Hz.

The control signal for each link was the sum of the
torques generated by the inverse model f from Eq. (7)
and the feedback torque generated by the PD controller.
The feedback torque for the lower link measured the PD
error between the generated trajectory and the joint angles
of the lower link. This lower link’s feedback torque was
the tracking feedback. The feedback torque for the upper
link measured the PD error of the upper link of the robot
arm from the vertical line using joint angles. This upper
link’s feedback was the stabilizing feedback torque ustabilize
that needed to be minimized by feedback error learning.
The angle q1 was the system output joint angle for the
lower link measured with respect to the horizontal axis and
q2 was the system output joint angle for the upper link

0 1 2 3 4 5 6 7 8 9 10
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time in s

A
n

g
le

 i
n

 r
a

d
ia

n
s

System Output
Forward Trajectory

(a) Initial trajectories for upper link.

400 401 402 403 404 405 406 407 408 409 410
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time in s

A
n

g
le

 i
n

 r
a

d
ia

n
s

System Output
Forward Trajectory

(b) Final forward trajectory for upper link.

Fig. 3. Two-link robot arm’s simulation results (a) Initial trajectories of
the upper link. The dashed line is the system output and the continuous line
is the forward trajectory. (b) Final trajectories of the upper link. The two
trajectories completely overlap showing that the forward gait was completely
learned using feedbacks to converge to the control law’s criterion.

0 100 200 300 400
0

5

10

15

F
e

e
d

b
a

c
k
 T

o
rq

u
e

 i
n

 N
m

Time in s

(a) Two-link Arm feedback (Nm).

0 20 40 60 80 100

1600

1800

2000

2200

2400

2600
F

e
e

d
b

a
c
k
 T

o
rq

u
e

 i
n

 N
m

Time in s

(b) Biped Feedback (Nm).

Fig. 4. (a) Moving average of the absolute feedback for the two-link robot
arm averaged over 20 different initializations. As learning progressed, the
feedback reduced, and became nil in the case of the two-link robot arm.
(b) Moving average of the sum of feedbacks for the biped robot averaged
over 20 different initializations. Here, the feedback reduced and reached a
minimum when the learning stopped. The nonzero value of the feedback is
because of the underactuation of the biped model.

measured with respect to the lower link as seen in Fig. 2.
The forward trajectory for the links are referred to as q1d

and q2d, respectively. For a balanced upper link the upper
link’s forward and system output angle needed to converge to
π/2 radians with respect to the horizontal and its derivative
to 0 radians per second, i.e., qk1d + qk2d = π/2 and q̇k2d = 0.
We used the control laws as described in Eq. (3). Parameters
KP1, KD1, KP2 and KD2 are PD gains for the both the links
with |K2

D2| >|KP2| for stable control and learning [11].
The upper link’s initial trajectory was random and unbal-

anced. However, the control law followed the condition that

the upper link of the robot arm should always be vertical.
Therefore, initially the stabilizing feedback ensured that the
system was never out of balance. These feedbacks trained the
weight vectors of the feedforward rhythmic motor primitives
using gradient descent, minimizing the absolute balancing
feedback torque as per Eq. (10).

Using feedback error learning, the upper link’s feedfor-
ward gait q2d was learned in a direction such that the
stabilizing feedback was reduced. For this fully actuated
system, only the stability feedback, i.e., the upper link’s
feedback, was minimized, which was sufficient for learning
a stable gait.

As learning proceeded, the learned feedforward gait pro-
duced outputs that satisfied the control laws and kept the
feedback at zero, when passed through the inverse model
and the system. The convergence to a balanced gait using
feedback of the balance controller is shown in Fig. 3. As a
result, the balancing feedback torque reduced drastically and
became nil after about 400 seconds. The two-link robot arm’s
average absolute feedback torque values over 20 random
initializations are shown in Fig. 4(a).

As a step towards a biped simulator, we evaluated our
approach on a two-link robot arm with a weight distribution
and frequency closer to that of a walking human, with the
lower link acting as legs and the upper link acting as torso.
We set the upper link’s weight to 40 kg and the lower link’s
weight to 15 kg, the length of both to 1m and the period to
1 s. All these models converged well within 500 cycles of
learning, and the feedback was reduced to nil for both links
after this period.

B. Biped Model’s simulation

In the following , we consider learning the torso’s gait
for a biped model that has the additional challenges of
underactuation a moving base. Previously, there have been
methods to learn biped gaits from demonstration [10], [9] or
using reinforcement learning [8], [3] using rhythmic motor
primitives. A biped’s torso’s gait is learned using feedback
error learning without the use of complicated value functions
or giving supervised inputs from demonstrations. The goal
of this simulation was to minimize the feedback required by
the torso to remain in balance when its initial trajectory with
respect to the legs is random. As in the previous section a
gait to follow was given. In particular the gait of the lower
limbs, we want to learn the gait of the torso with respect to
the legs according to a control law.

The biped robot model consisted of three links: two legs,
a torso, and two actuators. The actuators were between the
two leg-to-torso joints. There were three joint angles to be
considered and the angles were measured in the uniform
coordinate system from the vertical as shown in Fig. 5. The
weight and size of the biped were chosen similar to that
of humans. Thus, the torso, each of the legs and the hip
weighed 40 kg, 15 kg and 10 kg respectively. Each link was
1m long. Since this simulation needed a biped with a torso,
the biped dynamics model was chosen from Grizzle et al. [4].
This model had a torso unlike other simple biped models or

compass walkers. The 3 links of the biped gave it 5 degrees
of freedom, one for each link and two for the coordinates of
the fixed support, i.e., the stance leg. The sampling rate of
the simulator was 200Hz.

q3 = π/6

q1 = +π/18

q2=−π/18

Stance leg

Fig. 5. Model for the biped robot
in the balanced state.

The objective of the sim-
ulation was to modify the
gait of the torso of the biped
while it continued to walk,
such that the balance con-
troller’s feedback was min-
imized. The biped’s dynam-
ics equations were of the
same form as Eq. (4). The
three joint angle trajectories
were modeled using rhyth-
mic motor primitives. We
used 16 basis functions per
cycle for each of the rhyth-
mic movement primitives.
The walking rate was assumed to be two steps a second,
i.e., a complete walk cycle in 1 s. A walk cycle consists of
pivoting the whole body on the stance leg while pushing
the swing leg forward, and further switching the stance and
the swing legs and repeating the previous action. The stage
of switching the stance and swing legs is called the impact
stage. The gait for this simulation was a dynamic gait, where
the impact stage was instantaneous, i.e., the switching of the
stance and swing legs was instantaneous.

The torques during the stance and the swing phase for a
leg were completely different. The dynamical model of the
biped used was defined in terms of the stance leg as a fixed
support [4] and the torso and the swing leg being in motion
attached to this fixed support. Thus, at each impact stage
there needed to be a transformation of coordinates between
the old stance leg to the new stance leg. In our simulation no
special force model was assumed for the impact stage. There
was a simple switch in trajectories and forces between the
old stance leg and the new stance leg. Hence, if the before
impact state was X− = [q1, q2, q3, q̇1, q̇2, q̇3], the after impact
state was X+ = [q2, q1, q3, q̇2, q̇1, q̇3], as during the impact
stage coordinates between the two legs were swapped. Along
with these angles, their corresponding force equations were
switched. This switching of forces was valid because the
before and after impact joint velocities of the limbs were
zero. The switching was only a change of coordinates for
the corresponding limbs switching between swing and stance
legs. For a detailed proof we refer [4].

The biped had one stabilizing feedback for the torso’s
link and two tracking feedbacks for the limbs. Minimizing
only the stabilizing feedback, i.e., the torso’s balance feed-
back, would have led to increasing the other two tracking
feedbacks. As, there were two actuators and three feed-
backs, the feedbacks were coupled and then provided to
their corresponding actuations. Hence, decreasing stabilizing
feedback alone led to an increase in the other two tracking
feedbacks. This increase in other feedbacks could have led
to a wrong gait followed or a wrong gait learned. Hence,

0 1 2 3 4 5 6 7 8 9 10

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time in s

A
n
g
le

 i
n
 r

a
d
ia

n
s

System Output
Forward trajectory

(a) Initial forward trajectories for the torso.

60 61 62 63 64 65 66 67 68 69 70
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time in s

A
n

g
le

 i
n

 r
a

d
ia

n
s

System Output
Forward trajectory

(b) Final forward trajectory for the torso.

Fig. 6. Underactuated biped. The dashed line is the system output, the
continuous line is the forward trajectory. (a) Initial forward trajectories
for the torso. (b) Final forward trajectory for the torso: Due to the
underactuation, convergence was not perfect. The periodic pattern of the
trajectories was learned perfectly, but the baseline of the trajectory differed
by a small margin.

the cost function chosen was the sum of squares of the three
feedbacks using Eq. (5) and it was minimized with respect to
the weights of the rhythmic motor primitives for the torso’s
joint using the learning rule in Eq. (10). In this simulation,
we forced the torso to be at π/6 radians to the vertical axis
while starting from an unknown random trajectory. The lower
limbs maintained a periodic sinusoidal gait between ±π/18.
The feedbacks hence were based on this stabilizing criterion
for the torso’s link and regular trajectory tracking condition
for the other two links using the PD control in Eq. (3).

Fig. 6 shows that the torso’s forward gait was learned from
an initial unknown gait, to a final converged and balanced
gait. The learned gait has the same periodic structure, but
differs in the baseline by a small margin. As the summed
feedback could never be reduced to zero, the upper torso did
not perfectly converge to the required limit of +π/6, which
can be seen in Fig. 6. The convergence in the two-link robot
arm’s case was perfect to the desired gait as the link to be
stabilized was independently actuated. This was not the case
for the biped’s torso. Hence, a perfect output according to
the control law is difficult to achieve in the biped, but our
method ensured that all the tasks are fulfilled at best without
any unstability in the system.

The plot of average absolute summed feedback torque over

20 runs is given in Fig. 4(b). The feedback was reduced
considerably from the start time as the gait was learned. It
can be seen that there was a considerable amount of learning
in the first 40 s as the feedback reduced the most here and
then reached a minimum. After learning, the sum of the
absolute feedback torques was almost halved from the initial
value, and the standard deviation is almost zero.

IV. CONCLUSION

We have presented an approach to learn gaits online
based on the feedback error learning architecture. Feedback
error learning of rhythmic motor primitives allows for lower
feedback gains compared to stabilizing controllers without
such a learning mechanism, while increasing the safety of
the robots. Our approach uses linear control laws without
the need of any supervised examples or value functions. We
evaluated our approach on stabilizing a two-link arm and an
underactuated biped robot model. Our results indicate that for
the fully actuated two-link arm, the stabilizing feedback can
be used as a learning signal to learn trajectories. However,
in the case of the underactuated biped, the sum of all the
feedback errors affecting the stabilization actuator must be
used as the learning signal to learn forward trajectories. In
both cases, the learned trajectories minimized the feedback.

Our method is an improvement compared to the other
learning methods as it does not need supervised inputs or
value functions, and provides a much simpler solution to
the learning problem. However, our method can replace
traditional methods only in scenarios where control laws can
be formulated for the trajectories to be learned.

REFERENCES

[1] L. Bottou. Online algorithms and stochastic approximations. In Online
Learning and Neural Networks. Cambridge University Press, 1998.

[2] J. J. Craig. Introduction to Robotics: Mechanics and Control. Addison-
Wesley Longman Publishing Co., Inc., 1989.

[3] M. P. Deisenroth, R. Calandra, A. Seyfarth, and J. Peters. Toward fast
policy search for learning legged locomotion. In IROS, 2012.

[4] J. W. Grizzle, G. Abba, and F. Plestan. Asymptotically stable walking
for biped robots: Analysis via systems with impulse effects. IEEE
Transactions on Automatic Control, 46(1), 2001.

[5] A. Ijspeert, J. Nakanishi, and S. Schaal. Learning attractor landscapes
for learning motor primitives. In NIPS, 2003.

[6] M. Kawato. Feedback-error-learning neural network for supervised
motor learning. Advanced Neural Computers, 1990.

[7] J. Kober and J. Peters. Learning motor primitives for robotics. In
ICRA, 2009.

[8] Jun Morimoto, Garth Zeglin, and Christopher G. Atkeson. Minimax
differential dynamic programming: An application to robust biped-
walking. In NIPS, 2002.

[9] J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, and
M. Kawato. A framework for learning biped locomotion with dynamic
movement primitives. In Humanoids, 2004.

[10] J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, and
M. Kawato. Learning from demonstration and adaptation of biped
locomotion. In Robotics and Autonomous Systems, 2004.

[11] J. Nakanishi and S. Schaal. Feedback error learning and nonlinar
adapative control. In Neural Networks, 2004.

[12] J. Peters and S. Schaal. Policy gradient methods for robotics. In IROS,
2006.

[13] D. Pongas, A. Billard, and S. Schaal. Rapid synchronization and
accurate phase-locking of rhythmic motor primitives. In IROS, 2005.

[14] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert. Learning movement
primitives. In ISRR, 2004.

[15] T. Yoshikawa. Foundations of Robotics. MIT Press, 1990.

