CS 188: Artificial Intelligence

Reinforcement Learning |l

Nakul Gopalan

[Someslides were created by Dan Klein and Piétbbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available ai.b#pkéley.edy

Reinforcement Learning

A We still assume an MDP:
A Aset of states $ S
A Aset of actions (per state) A
A Amodel T§,a,9
A Areward function R{,a,%p
A Adiscount factomn

A Still looking for a policg(s), or valueV

Racing Search Tree

A2 SONBE R2AYy3 g1
work with expectimax

A Problem: States are repeated

A Idea: Only compute needed
guantities once

A Problem: Tree goes on forever fl fl m fl fl m fl m

A ldea: Do a deptitimited | IR |

|

computation, but with increasing | |
depths until change is small Hﬂﬂ ﬂﬂﬁﬂﬁ Hﬂﬂ mm Hﬁﬂﬂﬁ
A Note: deep parts of the tree

S@SYU dzl t t e ORZ.)/QU;H,NNM‘M,I&INJ I T TR THIINLLL

Value lteration

A Algorithm:
A InitializeVV*(s)=0 for all s
C2NJ AGSNY A2y O I nX XXZb

For each state:
K*(s) = max > T(s,a,s') |R(s,a,s") +~Vi(s)]
S’

SI

Model

A Does the agent know its transition model?
A Do we know transition models of states?

Model-Based Learning

Model-Based Learning

A Model-Based ldea:

A Learn an approximate model based on experiences
A Solve for values as if the learned model were correct

A Step 1: Learn empirical MDP model
Al 2dzy i 2dzi02YSa aQ FT2NJ SIFOK asz |
A Normalize to give an estimate 7'(s, a, s’)
A Discover eaclR(s,a,s') 6 KSY S SELISNRS

(l

A Step 2: Solve the learned MDP
A For example, use value iteration, as before

Model based learning

IPLYAOGALFEATS | L2t AOE -
2. Repeat till convergence {
0Ll 0 9ESOdzi S -~ Ay pSodésy OA NP

(b) Supervised learning®> updater'(s,a,s’) ank(s,a,s’)

(c) Apply value iteration with the estimated T and R to get a
new estimated value function V .

ORUO !'LIRIGS -~ G2 060S 0KS 3INES

Input Policyp

Observed Episodes (Training)

Episodel

g B, east, G1 A
C, east, D1

Assumeg=1

L D, exit, X, +19

Episode 3

g E, north, C-1
C, east, Dl

~N

Episode 2

g B, east, G1 A
C, east, D1

\D’ exit, X, &Oj

L D, exit, X, +19

Episode 4

g E, north, C-1
C, east, Al

~N

Example: ModeBased Learning

L earned Model

T(s,a,s")

[T(B, east, C)=1.0
T(C, east, D) =0.7
T(C, east, A) =0.2

\A’ exit, x-10)

_ X

R(s,a,s")

4 R(B, east, C)& A
R(C, east, D)&
R(D, exit, x) = +10

_ X Y,

|ssues

10

Model-Free Learning

A Modelfree learning
A Experience world through episodes

(s,a,r,s,a ,r',s" a" r" s"...)

A Update estimates each transiti(s, a, r, ')

A Over time, updates will mimic Bellman updates

Q-Learning

A Wed like to do Qualue updates to each-§tate:
Qr+1(s,a) ZT(S a,s’) [R(s a,s’) +~ maXQk(s a’)

A But caf2compute thls update without knowing T, R

A Instead, compute average as we go
A Receive a sample transition (s,a,s
A This sample suggests

Qs,a) =7+ ymax Q(s',)

A But we want to average over results from (s,a) (Why?)
A Sokeep a running average

Qs,a) — (1=)Qs,a) + (@) |r + 7 MaxQ(s',)

Q-Learning

controller Q-/earning(S,A, y, &)

2: Inputs

3: Sis a set of states

4: A is a set of actions

5: y the discount

6: « is the step size

7: Local

8: real array Q/S,A]

9: previous state s

10: previous action a

11: initialize Q/S,A/ arbitrarily

12: observe current state s

13: repeat

14: select and carry out an action a

15: observe reward rand state s’ From: Artificial |
Intelligence: Foundations

16 Qfs,a] =Qfs,a] + «(r+ ymaxy Qfs’aj - Qfs,aj) of Computational
Agents second edition,

17: s —5s' Cambridge University
Press

18: until termination

http://www.cambridge.org/9781107195394

Q-Learning Properties

A Amazing result: @earning converges to optimal polieyeven
If you®@e actingsuboptimally

A This is calledff-policy learning

A Caveats:
A Youhave toexplore enough
A Youhave toeventually make the learning rate
small enough
A X but not decrease it too quickly
A Basically, in the limit, it doe@matter how you select actions (!)

[Demo: Qlearningg auto ¢ cliff grid (L11D1)

Exploration vs. Exploitation

How to Explore?

A Several schemes for forcing exploration

A Simplest: random actiong-greedy)
AEvery time step, flip a coin
AWith (small) probability, act randomly
AWith (large) probability &, act on current policy

A Problems with random actions?

AYou do eventually explore the space, but keep
thrashing around once learning is done

AOne solution: lowee over time
A Another solution: exploration functions

[Demo: Qlearningg manual exploratiorg bridge grid (L11D2
[Demo: Qlearningg epsilongreedy-- crawler (L11D3)

Examples: Grid world vs Cliff Walk

17

Exploration Functions

A When to explore?
A Random actions: explore a fixed amount

A Better idea: explore areas whose badness is r
(yet) established, eventually stop exploring

A Exploration function

A Takes a value estimate u and a visit count n, ¢
returns an optimistic utility, e.of (u,n) = u + k/n

Regular @pdate: Q(s,a) <—a R(s,a,5") +ymaxQ(s',a’)
Modified QUpdate: Q(s,a) <—a R(s,a,s") +ymax f(Q(s",a’), N(s',a"))

A Note: this propagates thébonus back to states that lead to unknown states as well!

[Demo: exploratiorg Q-learningg crawler¢ exploration function (L11D4

Approximate @QLearning

Generalizing Across States

A Basic GLearning keeps a table of alvglues

A In realistic situations, we cannot possibly learn
about every single state!
A Too many states to visit them all in training
A Too many states to hold thetgbles in memory

A Instead, we want to generalize:
A Learn about some small number of training states fron

experience
A Generalize that experience to new, similar situations
ACKA&a Aa | FdzyRFYSYyualf AR

see itover and over again

[demo ¢ RLpacman

Example: Pacman

[SGQa alé ¢S IRAvORS SN, Or even this one!
through experience we know nothing
that this state is bad.: about this state:

[Demo: Qlearningg pacmang tiny ¢ watch all (11D5)]
[Demo: Qlearningg pacmang tiny ¢ silent train (111D6)]
[Demo: Qlearningg pacmang tricky ¢ watch all (IL1D7)]

FeatureBased Representations

A Solution: describe a state using a vector of
features (properties)

A Features are functions from states to real numbers
(often 0/1) that capture important properties of the
state

A Example features:

A Distance to closest ghost

A Distance to closest dot

A Number of ghosts

A 1/ (dist to dot}

A IsPacmarin a tunnel? (0/1)
AXX SGO0o

A |s it the exact state on this slide?

A Can also describe agfate (s, a) with features(g.
action moves closer to food)

Linear Value Functions

A Using a feature representation, we can write a g function (or value function) for any
state using a few weights:

V(s) = wif1(s) +wafo(s) + ...+ wnfn(s)
Q(s,a) = wy f1(s,a)Fwofo(s,a)+...+wnfn(s,a)
A Advantage: our experience is summed up in a few powerful numbers

A Disadvantage: states may share features dttially bevery different in value!

Approximate @QLearning

QGs,0) = wifa(s,) twnfa(s, @)+ Funalsia) |

A Q-learning with linear @unctions:

difference = [7“ + v max Q(s',a)| — Q(s,a)
a

Q(s,a) «— Q(s,a) + «[difference] ([DFW 49V

w; <+ w; + « [difference] f;(s,a) Approximate Q §

A Intuitive interpretation:
A Adjust weights of active features

A E.g., if something unexpectedly bad happens, blame the features that were on:
dlspreferl ff adrasSa 6A0K OKIFG adlrasSQa TSI Gddz2NBa

A Formal justification: online least squares

