
CS 188: Artificial Intelligence
Reinforcement Learning II

Nakul Gopalan
[Some slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Reinforcement Learning

▪ We still assume an MDP:

▪ A set of states s S

▪ A set of actions (per state) A

▪ A model T(s,a,s’)

▪ A reward function R(s,a,s’)

▪ A discount factor γ

▪ Still looking for a policy (s), or value V

Racing Search Tree

▪ We’re doing way too much
work with expectimax!

▪ Problem: States are repeated
▪ Idea: Only compute needed

quantities once

▪ Problem: Tree goes on forever
▪ Idea: Do a depth-limited

computation, but with increasing
depths until change is small

▪ Note: deep parts of the tree
eventually don’t matter if γ < 1

Value Iteration

▪ Algorithm:

▪ Initialize V*(s) = 0 for all s

For iteration t = 0, ……,N-1:

For each state s:

4

t t-1
t t-1

Model

▪ Does the agent know its transition model?

▪ Do we know transition models of states?

Model-Based Learning

Model-Based Learning

▪ Model-Based Idea:
▪ Learn an approximate model based on experiences
▪ Solve for values as if the learned model were correct

▪ Step 1: Learn empirical MDP model
▪ Count outcomes s’ for each s, a
▪ Normalize to give an estimate of
▪ Discover each when we experience (s, a, s’)

▪ Step 2: Solve the learned MDP
▪ For example, use value iteration, as before

Model based learning

1.Initialize a policy π

2. Repeat till convergence {

(a) Execute π in the environment for some “episodes”.

(b) Supervised learning! -> update our and

(c) Apply value iteration with the estimated T and R to get a
new estimated value function V .

(d) Update π to be the greedy with respect to V .

}

Example: Model-Based Learning

Input Policy

Assume: = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

T(s,a,s’).
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…

Issues

10

Model-Free Learning

▪ Model-free learning

▪ Experience world through episodes

▪ Update estimates each transition

▪ Over time, updates will mimic Bellman updates

r

a

s

s, a

s’

a’

s’, a’

s’’

Q-Learning

▪ We’d like to do Q-value updates to each Q-state:

▪ But can’t compute this update without knowing T, R

▪ Instead, compute average as we go
▪ Receive a sample transition (s,a,r,s’)

▪ This sample suggests

▪ But we want to average over results from (s,a) (Why?)

▪ So keep a running average

Q-Learning

From: Artificial

Intelligence: Foundations

of Computational

Agents, second edition,

Cambridge University

Press

http://www.cambridge.org/9781107195394

Q-Learning Properties

▪ Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

▪ This is called off-policy learning

▪ Caveats:

▪ You have to explore enough

▪ You have to eventually make the learning rate

small enough

▪ … but not decrease it too quickly

▪ Basically, in the limit, it doesn’t matter how you select actions (!)

[Demo: Q-learning – auto – cliff grid (L11D1)]

Exploration vs. Exploitation

How to Explore?

▪ Several schemes for forcing exploration
▪ Simplest: random actions (-greedy)

▪ Every time step, flip a coin

▪ With (small) probability , act randomly

▪ With (large) probability 1-, act on current policy

▪ Problems with random actions?
▪ You do eventually explore the space, but keep

thrashing around once learning is done

▪ One solution: lower over time

▪ Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)]
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]

Examples: Grid world vs Cliff Walk

17

Exploration Functions

▪ When to explore?

▪ Random actions: explore a fixed amount

▪ Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

▪ Exploration function

▪ Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g.

▪ Note: this propagates the “bonus” back to states that lead to unknown states as well!

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

Approximate Q-Learning

Generalizing Across States

▪ Basic Q-Learning keeps a table of all q-values

▪ In realistic situations, we cannot possibly learn
about every single state!
▪ Too many states to visit them all in training

▪ Too many states to hold the q-tables in memory

▪ Instead, we want to generalize:
▪ Learn about some small number of training states from

experience

▪ Generalize that experience to new, similar situations

▪ This is a fundamental idea in machine learning, and we’ll
see it over and over again

[demo – RL pacman]

Example: Pacman

[Demo: Q-learning – pacman – tiny – watch all (L11D5)]
[Demo: Q-learning – pacman – tiny – silent train (L11D6)]
[Demo: Q-learning – pacman – tricky – watch all (L11D7)]

Let’s say we discover
through experience

that this state is bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

Feature-Based Representations

▪ Solution: describe a state using a vector of
features (properties)
▪ Features are functions from states to real numbers

(often 0/1) that capture important properties of the
state

▪ Example features:
▪ Distance to closest ghost
▪ Distance to closest dot
▪ Number of ghosts
▪ 1 / (dist to dot)2

▪ Is Pacman in a tunnel? (0/1)
▪ …… etc.
▪ Is it the exact state on this slide?

▪ Can also describe a q-state (s, a) with features (e.g.
action moves closer to food)

Linear Value Functions

▪ Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

▪ Advantage: our experience is summed up in a few powerful numbers

▪ Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

▪ Q-learning with linear Q-functions:

▪ Intuitive interpretation:
▪ Adjust weights of active features
▪ E.g., if something unexpectedly bad happens, blame the features that were on:

disprefer all states with that state’s features

▪ Formal justification: online least squares

Exact Q’s

Approximate Q’s

Example: Q-Pacman

[Demo: approximate Q-
learning pacman (L11D10)]

Video of Demo Approximate Q-Learning -- Pacman

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting: Why Limiting Capacity Can Help*

Policy Search

Policy Search

▪ Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best
▪ E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they

still produced good decisions

▪ Q-learning’s priority: get Q-values close (modeling)

▪ Action selection priority: get ordering of Q-values right (prediction)

▪ We’ll see this distinction between modeling and prediction again later in the course

▪ Solution: learn policies that maximize rewards, not the values that predict them

▪ Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing
on feature weights

Policy Search

▪ Simplest policy search:

▪ Start with an initial linear value function or Q-function

▪ Nudge each feature weight up and down and see if your policy is better than before

▪ Problems:

▪ How do we tell the policy got better?

▪ Need to run many sample episodes!

▪ If there are a lot of features, this can be impractical

▪ Better methods exploit lookahead structure, sample wisely, change
multiple parameters…

Policy Search

[Andrew Ng] [Video: HELICOPTER]

Open problems

▪ Model based RL

▪ Explore vs exploit

▪ Sample complexity

▪ Safety/ Constraints

▪ On-policy vs off-policy learning

32

Conclusion

▪ MDPs

▪ Learning MDPs

▪ Learning Value functions

▪ Learning policies

▪ RL -> Large hammer to solve a lot of
problems

▪ Text book: Sutton & Barto RL: An
Introduction

http://incompleteideas.net/book/the-book.html

