
CS 188: Artificial Intelligence
Reinforcement Learning II

Nakul Gopalan
[Some slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Reinforcement Learning

ÁWe still assume an MDP:

ÁA set of states s ÍS

ÁA set of actions (per state) A

ÁA model T(s,a,sΩ)

ÁA reward function R(s,a,sΩ)

ÁA discount factor ɔ

ÁStill looking for a policy p(s), or valueV

Racing Search Tree

Á²ŜΩǊŜ ŘƻƛƴƎ ǿŀȅ ǘƻƻ ƳǳŎƘ
work with expectimax!

ÁProblem: States are repeated
Á Idea: Only compute needed

quantities once

ÁProblem: Tree goes on forever
Á Idea: Do a depth-limited

computation, but with increasing
depths until change is small

ÁNote: deep parts of the tree
ŜǾŜƴǘǳŀƭƭȅ ŘƻƴΩǘ ƳŀǘǘŜǊ ƛŦ ɔ< 1

Value Iteration

ÁAlgorithm:

ÁInitializeV*(s) = 0 for alls

CƻǊ ƛǘŜǊŀǘƛƻƴ ǘ Ґ лΣ ΧΧΣb-1:

For each state s:

4

t t-1
t t-1

Model

ÁDoes the agent know its transition model?

ÁDo we know transition models of states?

Model-Based Learning

Model-Based Learning

ÁModel-Based Idea:
ÁLearn an approximate model based on experiences
ÁSolve for values as if the learned model were correct

ÁStep 1: Learn empirical MDP model
Á/ƻǳƴǘ ƻǳǘŎƻƳŜǎ ǎΩ ŦƻǊ ŜŀŎƘ ǎΣ ŀ
ÁNormalize to give an estimate of
ÁDiscover each ǿƘŜƴ ǿŜ ŜȄǇŜǊƛŜƴŎŜ όǎΣ ŀΣ ǎΩύ

ÁStep 2: Solve the learned MDP
ÁFor example, use value iteration, as before

Model based learning

1ΦLƴƛǘƛŀƭƛȊŜ ŀ ǇƻƭƛŎȅ ˉ

2. Repeat till convergence {

όŀύ 9ȄŜŎǳǘŜ ˉ ƛƴ ǘƘŜ ŜƴǾƛǊƻƴƳŜƴǘ ŦƻǊ ǎƻƳŜ άepisodesέ.

(b) Supervised learning! -> update our and

(c) Apply value iteration with the estimated T and R to get a
new estimated value function V .

όŘύ ¦ǇŘŀǘŜ ˉ ǘƻ ōŜ ǘƘŜ ƎǊŜŜŘȅ ǿƛǘƘ ǊŜǎǇŜŎǘ ǘƻ ± Φ

}

Example: Model-Based Learning

Input Policy p

Assume: g= 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

T(s,a,sΩύΦ
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

Χ

R(s,a,sΩύΦ
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

Χ

Issues

10

Model-Free Learning

ÁModel-free learning

ÁExperience world through episodes

ÁUpdate estimates each transition

ÁOver time, updates will mimic Bellman updates

r

a

s

s, a

sΩ

aΩ

ǎΩΣ ŀΩ

sΩΩ

Q-Learning

ÁWeΩd like to do Q-value updates to each Q-state:

ÁBut canΩt compute this update without knowing T, R

Á Instead, compute average as we go
ÁReceive a sample transition (s,a,r,sΩ)

ÁThis sample suggests

ÁBut we want to average over results from (s,a) (Why?)

ÁSokeep a running average

Q-Learning

From: Artificial

Intelligence: Foundations

of Computational

Agents, second edition,

Cambridge University

Press

http://www.cambridge.org/9781107195394

Q-Learning Properties

ÁAmazing result: Q-learning converges to optimal policy -- even
if youΩre acting suboptimally!

ÁThis is called off-policy learning

ÁCaveats:

ÁYou have toexplore enough

ÁYou have toeventually make the learning rate

small enough

ÁΧ but not decrease it too quickly

ÁBasically, in the limit, it doesnΩt matter how you select actions (!)

[Demo: Q-learning ςauto ςcliff grid (L11D1)]

Exploration vs. Exploitation

How to Explore?

ÁSeveral schemes for forcing exploration
ÁSimplest: random actions (e-greedy)
ÁEvery time step, flip a coin

ÁWith (small) probability e, act randomly

ÁWith (large) probability 1-e, act on current policy

ÁProblems with random actions?
ÁYou do eventually explore the space, but keep

thrashing around once learning is done

ÁOne solution: lower eover time

ÁAnother solution: exploration functions

[Demo: Q-learning ςmanual exploration ςbridge grid (L11D2)]
[Demo: Q-learning ςepsilon-greedy -- crawler (L11D3)]

Examples: Grid world vs Cliff Walk

17

Exploration Functions

ÁWhen to explore?

ÁRandom actions: explore a fixed amount

ÁBetter idea: explore areas whose badness is not
(yet) established, eventually stop exploring

ÁExploration function

ÁTakes a value estimate u and a visit count n, and
returns an optimistic utility, e.g.

ÁNote: this propagates the άbonusέ back to states that lead to unknown states as well!

Modified Q-Update:

Regular Q-Update:

[Demo: exploration ςQ-learning ςcrawler ςexploration function (L11D4)]

Approximate Q-Learning

Generalizing Across States

ÁBasic Q-Learning keeps a table of all q-values

Á In realistic situations, we cannot possibly learn
about every single state!
ÁToo many states to visit them all in training

ÁToo many states to hold the q-tables in memory

Á Instead, we want to generalize:
ÁLearn about some small number of training states from

experience

ÁGeneralize that experience to new, similar situations

Á¢Ƙƛǎ ƛǎ ŀ ŦǳƴŘŀƳŜƴǘŀƭ ƛŘŜŀ ƛƴ ƳŀŎƘƛƴŜ ƭŜŀǊƴƛƴƎΣ ŀƴŘ ǿŜΩƭƭ
see it over and over again

[demo ςRL pacman]

Example: Pacman

[Demo: Q-learning ςpacmanςtiny ςwatch all (L11D5)]
[Demo: Q-learning ςpacmanςtiny ςsilent train (L11D6)]
[Demo: Q-learning ςpacmanςtricky ςwatch all (L11D7)]

[ŜǘΩǎ ǎŀȅ ǿŜ ŘƛǎŎƻǾŜǊ
through experience
that this state is bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

Feature-Based Representations

ÁSolution: describe a state using a vector of
features (properties)
ÁFeatures are functions from states to real numbers

(often 0/1) that capture important properties of the
state

ÁExample features:
ÁDistance to closest ghost
ÁDistance to closest dot
ÁNumber of ghosts
Á1 / (dist to dot)2

ÁIs Pacmanin a tunnel? (0/1)
ÁΧΧ ŜǘŎΦ
ÁIs it the exact state on this slide?

ÁCan also describe a q-state (s, a) with features (e.g.
action moves closer to food)

Linear Value Functions

ÁUsing a feature representation, we can write a q function (or value function) for any
state using a few weights:

ÁAdvantage: our experience is summed up in a few powerful numbers

ÁDisadvantage: states may share features but actually bevery different in value!

Approximate Q-Learning

ÁQ-learning with linear Q-functions:

Á Intuitive interpretation:
ÁAdjust weights of active features
ÁE.g., if something unexpectedly bad happens, blame the features that were on:

dispreferŀƭƭ ǎǘŀǘŜǎ ǿƛǘƘ ǘƘŀǘ ǎǘŀǘŜΩǎ ŦŜŀǘǳǊŜǎ

ÁFormal justification: online least squares

�(�[�D�F�W���4�¶�V

Approximate Q�¶s

