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Recap

Conditional probabilities:

𝑝 𝐴, 𝐵 = 𝑝 𝐴 𝐵 𝑝 𝐵 = 𝑝 𝐵 𝐴 𝑝(𝐴)

Bayes rule:

𝑝 𝐴|𝐵 =
𝑝(𝐴, 𝐵)

𝑝(𝐵)
=
𝑝 𝐵 𝐴 𝑝(𝐴)

𝑝(𝐵)

𝑝 𝐴 = 1 = σ𝑖=1
𝐾 𝑝(𝐴 = 1, 𝐵𝑖)=σ𝑖=1

𝐾 𝑝 𝐴 𝐵𝑖 𝑝(𝐵𝑖)



Tomorrow=Rainy Tomorrow=Cold P(Today)

Today=Rainy 4/9 2/9 [4/9 + 2/9] = 2/3

Today=Cold 2/9 1/9 [2/9 + 1/9] = 1/3

P(Tomorrow) [4/9 + 2/9] = 2/3 [2/9 + 1/9] = 1/3

P(Tomorrow = Rainy) = 



Hard Clustering Can Be Difficult

• Hard Clustering: K-Means, Hierarchical Clustering, DBSCAN



Towards Soft Clustering
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Gaussian Distribution

𝑁 𝜇, 𝜎 =
1

2𝜋𝜎2
𝑒
−
𝑥−𝜇 2

2𝜎2

1-d Gaussian





Mixture Models

• Formally a Mixture Model is the weighted sum of a number of 

pdfs where the weights are determined by a distribution,  

𝜋0 𝜋1 𝜋2 𝑥

What is f in GMM?



𝑓0(𝑥)
𝑥

𝜋0 𝜋1 𝜋2 𝑥

𝑓2(𝑥)
𝑥

𝑓1(𝑥)
𝑥



Why 𝑝(𝑥) is a pdf?



Why GMM?

It creates a new pdf for us to generate random variables. It is 

a generative model. 

It clusters different components using a Gaussian distribution.

So it provides us the inferring opportunity. Soft assignment!!



Some notes:

Is summation of a bunch of Gaussians a Gaussian 

itself?

p(x) is a Probability density function or it is also called a marginal 

distribution function.

p(x) = the density of selecting a data point from the pdf which is 

created from a mixture model. Also, we know that the area under 

a density function is equal to 1. 



Mixture Models are Generative

• Generative simply means dealing with joint probability 𝑝 𝑥, 𝑧

Let’s say 𝑓(. ) is a Gaussian distribution

p x = 𝜋0𝑁 𝑋 𝜇0, 𝜎0 + 𝜋1𝑁 𝑋 𝜇1, 𝜎1 +⋯+ 𝜋𝑘𝑁(𝑋|𝜇𝑘 , 𝜎𝑘)

p x = 𝜋0𝑓0(𝑥) + 𝜋1𝑓1(𝑥) + ⋯+ 𝜋𝑘𝑓𝑘(𝑥)

𝑝 𝑥 =෍
𝑘
𝑁(𝑥|𝜇𝑘 , 𝜎𝑘)𝜋𝑘

𝑝 𝑥 =෍
𝑘
𝑝 𝑥 𝑧𝑘 𝑝(𝑧𝑘)

𝑝(𝑥) =෍
𝑘
𝑝(𝑥, 𝑧𝑘)

𝑧𝑘 is component 𝑘

https://en.wikipedia.org/wiki/Generative_model




GMM with graphical model concept

𝑍𝑘

N

𝑋𝑛

𝜋𝑘

𝜇𝑘

Σ𝑘

𝑝 𝑧𝑛𝑘 𝜋𝑘 =ෑ
𝑘=1

𝐾

𝜋𝑘
𝑧𝑛𝑘

𝑝 𝑥 𝑧𝑛𝑘 , 𝜋, 𝜇, Σ =ෑ
𝑘=1

𝐾

𝑁 𝑥 𝜇𝑘 , Σ𝑘
𝑧𝑛𝑘

𝜋0 𝜋1 𝜋2 𝑥

Given 𝑧, 𝜋, 𝜇, and Σ, what is the 

probability of x in component k

𝑍𝑘 is the latent variable

1-of-K representation

𝜃



What is soft assignment?

𝜋0 𝜋1 𝜋2 𝑥
𝑥

What is the probability of a datapoint 𝑥 in each component?

How many components we have here? 3

How many probability distributions? 3

What is the sum value of the 

3 probabilities for each 

datapoint?

1



How to calculate the probability of datapoints in the 

first component (inferring)?

p x = 𝜋0𝑁 𝑋 𝜇0, 𝜎0 + 𝜋1𝑁 𝑋 𝜇1, 𝜎1 + 𝜋2𝑁(𝑋|𝜇2, 𝜎2)

Let’s calculate the responsibility of the first component among the rest for one point x

𝜏0 =
𝑁 𝑋 𝜇0, 𝜎0 𝜋0

𝑁 𝑋 𝜇0, 𝜎0 𝜋0 +𝑁 𝑋 𝜇1, 𝜎1 𝜋1 +𝑁 𝑋 𝜇2, 𝜎2 𝜋2

Let’s call that 𝜏0

𝜏0 =
𝑝 𝑥 𝑧0 𝑝(𝑧0)

𝑝 𝑥 𝑧0 𝑝(𝑧0) + 𝑝 𝑥 𝑧1 𝑝(𝑧1) + 𝑝 𝑥 𝑧1 𝑝(𝑧1)

𝜏0 =
𝑝(𝑥, 𝑧0)

σ𝑘=0
𝑘=2𝑝(𝑥, 𝑧𝑘)

=
𝑝(𝑥, 𝑧0)

𝑝(𝑥)
= 𝑝(𝑧0|𝑥)

Given a datapoint x, what is probability of that datapoint in component 0

If I have 100 datapoints and 3 components, what is the size of 𝜏? 100X3



Inferring Cluster Membership

• We have representations of the joint 𝑝(𝑥, 𝑧𝑛𝑘|𝜃) and the 

marginal, 𝑝(𝑥|𝜃)

• The conditional of 𝑝 𝑧𝑛𝑘 𝑥, 𝜃) can be derived using Bayes rule.

The responsibility that a mixture component takes for explaining an 

observation x.



Mixtures of Gaussians

What is the probability of picking a mixture component (Gaussian model)= 𝑝 𝑧 = 𝜋𝑖

AND

Picking data from that specific mixture component = p(𝑥|𝑧)

𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝(𝑧)➔Generative model, Joint distribution

𝑝 𝑥, 𝑧 = 𝑁(𝑥|𝜇𝑘 , 𝜎𝑘)𝜋𝑘

𝜋0 𝜋1 𝜋2 𝑥

z is latent, we observe x, but z is hidden

https://en.wikipedia.org/wiki/Generative_model


𝜋0 𝜋1 𝜋2 𝑥

What are GMM parameters?

Mean 𝜇𝑘 Variance 𝜎𝑘 Size 𝜋𝑘

Marginal probability distribution

𝑝 𝑧𝑘|𝜃 = 𝜋𝑘

𝑝 𝑥|𝑧𝑘 , 𝜃 = 𝑁(𝑥|𝜇𝑘 , 𝜎𝑘)

Select a mixture component with probability 𝜋

Sample from that component’s Gaussian

p x|𝜃 =෍
𝑘
𝑝(𝑥, 𝑧𝑘|𝜃) =෍

𝑘
𝑝 𝑥 𝑧𝑘 , 𝜃 𝑝(𝑧𝑘|𝜃 ) =

𝜋𝑘𝑓𝑘(𝑥)

෍
𝑘
𝑁(𝑥|𝜇𝑘 , 𝜎𝑘)𝜋𝑘



How about GMM for multimodal distribution?



Gaussian Mixture Model



Why having “Latent variable”

• A variable can be unobserved (latent) because: 

it is an imaginary quantity meant to provide some simplified and 
abstractive view of the data generation process.

- e.g., speech recognition models, mixture models (soft clustering)…

it is a real-world object and/or phenomena, but difficult or impossible 
to measure

- e.g., the temperature of a star, causes of a disease, evolutionary ancestors …

it is a real-world object and/or phenomena, but sometimes wasn’t 
measured, because of faulty sensors, etc.

• Discrete latent variables can be used to partition/cluster data 
into sub-groups.

• Continuous latent variables (factors) can be used for 
dimensionality reduction (factor analysis, etc).



Latent variable representation

p x|𝜃 =෍
𝑘
𝑝(𝑥, 𝑧𝑛𝑘|𝜃) =෍

𝑘
𝑝(𝑧𝑛𝑘|𝜃)𝑝 𝑥 𝑧𝑛𝑘 , 𝜃 = ෍

𝑘=0

𝐾

𝜋𝑘𝑁(𝑥|𝜇𝑘 , Σ𝑘)

𝑝(𝑧𝑛𝑘|𝜃) =ෑ
𝑘=1

𝐾

𝜋𝑘
𝑧𝑛𝑘 𝑝 𝑥 𝑧𝑛𝑘 , 𝜃 =ෑ

𝑘=1

𝐾

𝑁 𝑥 𝜇𝑘 , Σ𝑘
𝑧𝑛𝑘

Why having the latent variable?

The distribution that we can model using a mixture of Gaussian components is much 
more expressive than what we could have modeled using a single component.



Well, we don’t know 𝜋𝑘 , 𝜇𝑘 , Σk
What should we do?

We use a method called “Maximum Likelihood Estimation” (MLE) 

to solve the problem.

argmax 𝑝 𝑥|𝜃 = 𝑝 𝑥 𝜋, 𝜇, Σ =ෑ

𝑛=1

𝑁

𝑝 𝑥𝑛|𝜃 =ෑ

𝑛=1

𝑁

෍

𝑘=0

𝐾

𝜋𝑘𝑁(𝑥𝑛|𝜇𝑘 , Σ𝑘)

p x = p x|𝜃 =෍
𝑘
𝑝(𝑥, 𝑧𝑘|𝜃) =෍

𝑘
𝑝(𝑧𝑘|𝜃)𝑝 𝑥 𝑧𝑘 , 𝜃 = ෍

𝑘=0

𝐾

𝜋𝑘𝑁(𝑥|𝜇𝑘, Σ𝑘)

Let’s identify a likelihood function, why?

Because we use likelihood function to optimize the probabilistic model 

parameters!



argmax 𝑝 𝑥 = 𝑝 𝑥 𝜋, 𝜇, Σ =ෑ

𝑛=1

𝑁

𝑝 𝑥𝑛|𝜃 =ෑ

𝑛=1

𝑁

෍

𝑘=0

𝐾

𝜋𝑘𝑁(𝑥𝑛|𝜇𝑘 , Σ𝑘)

ln[𝑝 𝑥 ] = ln[𝑝 𝑥 𝜋, 𝜇, Σ ]

• As usual: Identify a likelihood function

• And set partials to zero…



)

Maximum Likelihood of a GMM

• Optimization of means.



Maximum Likelihood of a GMM

• Optimization of covariance



)

Maximum Likelihood of a GMM

• Optimization of mixing term

(𝑧𝑛𝑘)



MLE of a GMM

(𝑧𝑛𝑘)
Not a closed form solution!!

𝜏 is not known exactly

What next?
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EM for GMMs

• E-step: Evaluate the Responsibilities 



EM for GMMs

• M-Step: Re-estimate Parameters



Expectation Maximization

• Expectation Maximization (EM) is a general algorithm to deal with 

hidden variables.

• Two steps:

E-Step: Fill-in hidden values using inference

M-Step: Apply standard MLE method to estimate parameters

• EM always converges to a local minimum of the likelihood.



EM for Gaussian Mixture Model:



EM for Gaussian Mixture Model: Example
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EM for Gaussian Mixture Model: Example



EM for Gaussian Mixture Model: Example



EM for Gaussian Mixture Model: Example



Demo

• Demo link: https://lukapopijac.github.io/gaussian-mixture-

model/



EM Algorithm for GMM (matrix form)

Book : C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006



EM for GMMs

• M-Step: Re-estimate Parameters



EM Algorithm for GMM (matrix form)

Book : C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006

𝜸(𝒛𝒏𝒌)

(𝒛𝒏𝒌)
𝒌

𝒌

𝒌

𝒌 𝒌

𝒌

𝜸(𝒛𝒏𝒌)

𝜸(𝒛𝒏𝒌)

𝜸(𝒛𝒏𝒌)

𝜸(𝒛𝒏𝒌)



Relationship to K-means

• K-means makes hard decisions. 

Each data point gets assigned to a single cluster.

• GMM/EM makes soft decisions.

Each data point can yield a posterior p(z|x)

• K-means is a special case of EM.



General form of EM

• Given a joint distribution over observed and latent variables: 

• Want to maximize:

1. Initialize parameters:

2. E Step: Evaluate:

3. M-Step: Re-estimate parameters (based on expectation of complete-

data log likelihood)

4. Check for convergence of params or likelihood

= 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 𝔼[ln 𝑝(𝑥, 𝑧|𝜃 ]



EM improves loglikelihood in both steps



Maximizing this

Will lead to maximizing

this



The first term is the expected complete log likelihood and the 

second term, which does not depend on 𝜃, is the entropy.

Thus, in the M-step, maximizing with respect to 𝜃
for fixed q we only need to consider the first term:



EM for Gaussian Mixture Model: Example

covariance_type="diag“ or "spherical“ or “full”

Source: Python Data Science Handbook by Jake VanderPlas

https://jakevdp.github.io/PythonDataScienceHandbook/05.12-gaussian-mixtures.html
http://shop.oreilly.com/product/0636920034919.do


Xi𝜇𝑖𝑛(𝑋𝑖)

𝜇𝑜𝑢𝑡2(𝑋𝑖)

𝜇𝑜𝑢𝑡1(𝑋𝑖)

𝜇𝑜𝑢𝑡
𝑚𝑖𝑛 𝑋𝑖 = min{𝜇𝑜𝑢𝑡2 𝑋𝑖 , 𝜇𝑜𝑢𝑡1(𝑋𝑖)}

Silhouette 

Coefficient



Silhouette Coefficient

56

The Silhouette Coefficient for clustering C:

SC close to 1 implies a good clustering (Points are close to their own 

clusters but far from other clusters)



Take-Home Messages

• The generative process of Gaussian Mixture Model

• Inferring cluster membership based on a learned GMM

• The general idea of Expectation-Maximization

• Expectation-Maximization for GMM

• Silhouette Coefficient


