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Clustering Images
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Goal of clustering:

Divide object into groups,
and objects within a group
are more similar than
those outside the group
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Clustering is Subjective

What is consider similar/dissimilar?

Clustering is subjective
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Are they similar or not?




So What is Clustering in General?

» You pick your similarity/dissimilarity function

» The algorithm figures out the grouping of objects based on the
chosen similarity/dissimilarity function

¢ Points within a cluster is similar
e Points across clusters are not so similar

» Issues for clustering
o How to represent objects? (Vector space? Normalization?)
¢ What is a similarity/dissimilarity function for your data?
¢ What are the algorithm steps?
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Properties of Similarity Function

» Desired properties of dissimilarity function

o Symmetry: d(x,y) = d(y, x)

» Otherwise you could claim "Alex looks like Bob, but Bob looks
nothing like Alex”

o Positive separability: d(x,y) = 0,ifandonlyifx = y

o Otherwise there are objects that are different, but you cannot tell
apart

o Triangularinequality: d(x,y) < d(x,z) + d(z,y)

» Otherwise you could claim "Alex is very like Bob, and Alex is very like
Carl, but Bob is very unlike Carl"



Distance Functions for Vectors

» Suppose two data points, both in Rd
o x = (%1,%2, 0, xd) "
oy =uY2-¥d)'

» Euclidean distance: d(x,y) = \/Z,;d=1(x;: —¥i)?

» Minkowski distance: d(x,y) = 1'i/Z]le(;vfi — y;)P
e Euclidean distance: p = 2

o Manhattan distance: p = 1,d(x,y) = E?:ﬂxi - ¥il

o “inf’-distance: p = oo, d(x,y) = max9=1|xi — il
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» Euclideandistance: V42 + 32 =5

¢ Manhattan distance: 4+3 =7

o “inf"-distance: max{4,3} =4

11



Some problems with metric distances

d(x,y) and d(x,z) ?

Curse of dimensionality

12


https://stats.stackexchange.com/questions/99171/why-is-euclidean-distance-not-a-good-metric-in-high-dimensions#99191

Hamming Distance

¢ Manhattan distance is also called Hamming distance when all
features are binary

¢ Count the number of difference between two binary vectors

o Example, x,y € {0,1}}7

12345678911112131415 6l 17
01 1lolol1lo o 1]ollol1 1 1 0 |01
01 1/1/0/l0]|0

1y1 1 1 0 |1]1
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Edit Distance

¢ Transform one of the objects into the other, and measure how
much effort it takes

x INTE+«*xNTION

y *EXECUTION

d s s 1 s

d: deletion (cost 5) d(x,y) =5Xx14+3x1+1x%x2=10
s: substitution (cost 1)
i: insertion (cost 2)
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Results of K-Means Clustering:

Image Clusters on intensity Clusters on color

K-means clustering using intensity alone and color alone



Clusters on color

K-means using color alone, 11 segments (clusters)



* Pictures from Mean Shift: A Robust Approach toward Feature Space Analysis, by D. Comaniciu and P. Meer http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html



K-Means Algorithm

¢ Initialize k cluster centers, {cl, c?, ..., ck}, randomly
o Do

« Decide the cluster memberships of each data point, x¢, by
assigning it to the nearest cluster center (cluster assignment)

m(i) = argminj—y,_x ”3’5I — CjHZ

¢ Adjust the cluster centers (center adjustment)
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¢ While any cluster center has been changed
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K-Means Algorithm
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Visualizing K-Means Clustering
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https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

K-Means: Step 1
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K-Means: Step 2
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K-Means: Step 3
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K-Means: Step 4
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K-Means: Step 5
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Questions

» Will different initialization lead to different results?
e Yes
¢ No
¢ Sometimes

» Will the algorithm always stop after some iteration?
¢ Yes
¢ No (we have to set a maximum number of iterations)
¢ Sometimes
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Formal Statement of the Clustering Problem

» Given n data points, {x1,x2,..xN} e Rd
» Find k cluster centers, {c%,c?, ..., ck} e R

» And assign each data point i to one cluster, (i) € {1, ..., k}

» Such that the averaged square distance from each data point to
respective cluster center(distortion metric) is minimum:

N
1

min — Hxi—c”(i)ﬂz
CT N 4
i=1

28



Total distance

Clustering is NP-Hard

» Find k cluster centers, {c1,c?,...,c*} € Rd, and assign each
data point i to one cluster, (i) € {1, ..., k}, to minimize

1 . 2
min—znxi — c”(i)H
i=1

cT N

o Asearch problem over the space of discrete assignments

« For all n data point together, there are kN possibility
¢ The cluster assignment determines cluster centers, and vice versa
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https://en.wikipedia.org/wiki/NP-hardness

¢ For all N data point together, there are k n possibility

X = {A,B,C}
n=3 (data points)

k=2 clusters of two members

Cluster 1 Cluster 2



Convergence of K-Means

» Will kmeans objective oscillate?

» The minimum value of the objective is finite

» Eachiteration of kmeans algorithm decrease the objective
¢ Cluster assignment step decreases objective

. 2
o (i) = argmin;—; _ ||x' — ¢’||” for each data point i

¢ Center adjustment step decreases objective

1
[{i:m (D=7}

™ C‘f = Zlﬂ(l)=jx1 — argminc ZI?T(I):}H}:L o CHZ
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Time Complexity

® Assume computing distance between two
instances is O(d) where d is the dimensionality of
the vectors.

® Reassigning clusters for all datapoints:

» O(kn) distance computations (when there is one feature)
» O(knd) (when there is d features)

® Computing centroids: Each instance vector gets
added once to some centroid (Finding centroid for
each feature): O(nd).

® Assume these two steps are each done once for I
iterations: O(Iknd).

Slide credit: Ray Mooney. 32



How to Choose K?

Elbow method

Best Number of Clusters
at the “"Elbow”

Objective Function Value
l.e,, Distortion

T 1 1T T 1 1T
1 2 3 4 5 6 7

Number of Clusters

Distortion score: computing the sum of squared
distances from each point to its assigned center

Image credit: Dileka Madushan. 33



k-Nearest Neighbors

® Algorithm:
» Find k examples {x;, ¢} closest to the test instance x
» Classification output is majority class from the set of k instances

® Non-parametric
® Infinite VC dimension
® Dependent on distance matric

® Hard in higher dimensions



Takeaways

® Clustering is distance matric dependent

® K-means converges with every step to the minimum
distortion metric

® Tdeal value of number of clusters( k ) can be identified using
the distortion metric for different values of k.



