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Clustering Images
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Goal of clustering:
Divide object into groups, |~ &
and objects withina group .
are more similar than s
those outside the group aE %5
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Clustering Is Subjective

What is consider similar/dissimilar?

Clustering is subjective
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Are they similar or not?




So What is Clustering in General?

» You pick your similarity/dissimilarity function

» The algorithm figures out the grouping of objects based on the
chosen similarity/dissimilarity function

¢ Points within a cluster is similar
e Points across clusters are not so similar

» Issues for clustering
o How to represent objects? (Vector space? Normalization?)
¢ What is a similarity/dissimilarity function for your data?
¢ What are the algorithm steps?
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Properties of Similarity Function

» Desired properties of dissimilarity function

o Symmetry: d(x,y) = d(y, x)

» Otherwise you could claim "Alex looks like Bob, but Bob looks
nothing like Alex”

o Positive separability: d(x,y) = 0,ifandonlyifx = y

o Otherwise there are objects that are different, but you cannot tell
apart

o Triangularinequality: d(x,y) < d(x,z) + d(z,y)

» Otherwise you could claim "Alex is very like Bob, and Alex is very like
Carl, but Bob is very unlike Carl"



Distance Functions for Vectors

» Suppose two data points, both in RO
o x = (x1,%2, 0, Xg) "
oy =uY2 Y

» Euclideandistance: d(x,y) = \/Zid=1(x;: —¥i)?

» Minkowski distance: d(x,y) = 1'i/Z]le(;vfi — ;)P
¢ Euclideandistance: p = 2
o Manhattan distance: p = 1,d(x,y) = Eidzﬂxi - ¥il

o “inf’-distance: p = oo, d(x,y) = maxgzllxi — il

10



» Euclideandistance: V42 + 32 =5

¢ Manhattan distance: 4+3 =7

o “inf"-distance: max{4,3} =4
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Some problems with metric distances

d(x,y) and d(x,z) ?

Curse of dimensionality
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https://stats.stackexchange.com/questions/99171/why-is-euclidean-distance-not-a-good-metric-in-high-dimensions#99191

Hamming Distance

¢ Manhattan distance is also called Hamming distance when all
features are binary

¢ Count the number of difference between two binary vectors

o Example, x,y € {0,1}}7

12345678911112131415 6l 17
01 1lolol1lo o 1]ollol1 1 1 0 |01
01 1/1/0/l0]|0

1y1 1 1 0 |1]1

13



Edit Distance
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