Machine Learning CS 4641

Clustering Analysis and K-Means

Nakul Gopalan Georgia Tech

Some of the slides are based on slides from Chao Zhang, Mahdi Roozbahani, and Le Song.

Outline

- Clustering
- Distance Function
- K-Means Algorithm
- Analysis of K-Means

Clustering Images

Goal of clustering:

Divide object into groups, and objects within a group are more similar than those outside the group

Clustering Hand Digits

D \mathbf{q} Э з $\overline{2}$ っ D ο З а н 2 a ч з з \sim з З J ŝ R oq

Clustering is Subjective

What is consider similar/dissimilar?

Clustering is subjective

Simpson's Family

School Employees

Females

Males

Are they similar or not?

So What is Clustering in General?

- You pick your similarity/dissimilarity function
- The algorithm figures out the grouping of objects based on the chosen similarity/dissimilarity function
 - Points within a cluster is similar
 - Points across clusters are not so similar
- Issues for clustering
 - How to represent objects? (Vector space? Normalization?)
 - What is a similarity/dissimilarity function for your data?
 - What are the algorithm steps?

Outline

- Clustering
- Distance Function
- K-Means Algorithm
- Analysis of K-Means

Properties of Similarity Function

- Desired properties of dissimilarity function
 - Symmetry: d(x, y) = d(y, x)• Otherwise your could drive like to the two symmetric
 - Otherwise you could claim "Alex looks like Bob, but Bob looks nothing like Alex"
 - Positive separability: d(x, y) = 0, if and only if x = y
 - Otherwise there are objects that are different, but you cannot tell apart
 - Triangular inequality: $d(x, y) \le d(x, z) + d(z, y)$
 - Otherwise you could claim "Alex is very like Bob, and Alex is very like Carl, but Bob is very unlike Carl"

Distance Functions for Vectors

Suppose two data points, both in R^d

•
$$x = (x_1, x_2, ..., x_d)^T$$

•
$$y = (y_1, y_2, ..., y_d)^{\mathsf{T}}$$

• Euclidean distance:
$$d(x,y) = \sqrt[3]{\sum_{i=1}^{d} (x_i - y_i)^2}$$

• Minkowski distance: $d(x, y) = \sqrt[p]{\sum_{i=1}^{d} (x_i - y_i)^p}$

• Euclidean distance: p = 2

• Manhattan distance:
$$p = 1, d(x, y) = \sum_{i=1}^{d} |x_i - y_i|$$

• "inf"-distance:
$$p = \infty$$
, $d(x, y) = \max_{i=1}^{d} |x_i - y_i|$

Example

• Euclidean distance: $\sqrt{4^2 + 3^2} = 5$ $\gamma \sim 2$

• Manhattan distance: 4 + 3 = 7

• "inf"-distance:
$$max{4,3} = 4$$

Some problems with metric distances

- Manhattan distance is also called Hamming distance when all features are binary
 - Count the number of difference between two binary vectors

• Example, $x, y \in \{0,1\}^{\frac{17}{2}}$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
\overline{x}	0	1	1	0	0	1	0	0	1	0	0	1	1	1	0	0	1
y	0	1	1	1	0	0	0	0	1	1	1	1	1	1	0	1	1

d(x,y)=5

 Transform one of the objects into the other, and measure how much effort it takes

d: deletion (cost 5) $d(x, y) = 5 \times 1 + 3 \times 1 + 1 \times 2 = 10$ s: substitution (cost 1) i: insertion (cost 2)

Outline

- Clustering
- Distance Function
- K-Means Algorithm
- Analysis of K-Means

Results of K-Means Clustering:

Image

Clusters on intensity

Clusters on color

K-means clustering using intensity alone and color alone

Clusters on color

K-means using color alone, 11 segments (clusters)

* Pictures from Mean Shift: A Robust Approach toward Feature Space Analysis, by D. Comaniciu and P. Meer http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

K-Means Algorithm

Initialize k cluster centers, {c¹, c², ..., c^k}, randomly

Do

- Decide the cluster memberships of each data point, x^i , by assigning it to the nearest cluster center (cluster assignment) $\pi(i) = argmin_{j=1,...,k} \|x^i - c^j\|^2$
- Adjust the cluster centers (center adjustment)

$$c^{j} = \frac{1}{|\{i:\pi(i)=j\}|} \sum_{i:\pi(i)=j} x^{i}$$

While any cluster center has been changed

K-Means Algorithm

Visualizing K-Means Clustering

Outline

- Clustering
- Distance Function
- K-Means Algorithm
- Analysis of K-Means

Questions

- Will different initialization lead to different results?
 - •Yes 🏑
 - No
 - Sometimes

- Will the algorithm always stop after some iteration?
 Yes
 - No (we have to set a maximum number of iterations)
 - Sometimes

Formal Statement of the Clustering Problem

- Given n data points, $\{x^1, x^2, \dots x^n\} \in R^{d}$
- Find k cluster centers, $\{c^1, c^2, \dots, c^k\} \in \mathbb{R}^{d}$
- And assign each data point i to one cluster, $\pi(i) \in \{1, \dots, k\}$
- Such that the averaged square distance from each data point to respective cluster center(distortion metric) is minimum:

$$\min_{c,\pi} \frac{1}{n} \sum_{i=1}^{n} \|x^{i} - c^{\pi(i)}\|^{2}$$

Clustering is <u>NP-Hard</u>

• Find k cluster centers, $\{c^1, c^2, ..., c^k\} \in R^d$, and assign each data point i to one cluster, $\pi(i) \in \{1, ..., k\}$, to minimize

- A search problem over the space of discrete assignments
 - For all <u>n</u> data point together, there are kⁿ possibility
 - The cluster assignment determines cluster centers, and vice versa

29

 $\min_{c,\pi} \frac{1}{n} \sum_{i=1}^{H} \|x^{i} - c^{\pi(i)}\|^{2}$ NP-har

For all n data point together, there are k n possibility

Convergence of K-Means

Will kmeans objective oscillate?

$$\frac{1}{n} \sum_{i=1}^{n} \|x^{i} - c^{\pi(i)}\|^{2}$$

Max.

- The minimum value of the objective is finite
- Each iteration of kmeans algorithm decrease the objective
 - Cluster assignment step decreases objective
 - $\pi(i) = argmin_{j=1,...,k} \|x^i c^j\|^2$ for each data point *i*
 - Center adjustment step decreases objective

•
$$c^{j} = \frac{1}{|\{i:\pi(i)=j\}|} \sum_{i:\pi(i)=j} x^{i} = argmin_{c} \sum_{i:\pi(i)=j} ||x^{i} - c||^{2}$$

Time Complexity

- Reassigning clusters for all datapoints:
 - ► O(kn) distance computations (when there is one feature)
 - O(knd) (when there is d features)
- Computing centroids: Each instance vector gets added once to some centroid (Finding centroid for each feature): O(nd).
- Assume these two steps are each done once for I iterations: O(Iknd).

DIM = M+ 10000000000000

Slide credit: Ray Mooney.

Number of Clusters

Distortion score: computing the sum of squared distances from each point to its assigned center

Image credit: Dileka Madushan.

k-Nearest Neighbors

- Algorithm:
- Lost supervised algo. 111 Find k examples $\{x_i, y_i\}$ closest to the test instance x
 - Classification output is majority class from the set of k instances
- Non-parametric Infinite VC dimension
- Dependent on distance matric $\boldsymbol{\times}$
- Hard in higher dimensions

K-1

Takeaways

metric

- Clustering is distance matric dependent
- K-means converges with every step to the minimum distortion metric
- Ideal value of number of clusters(k) can be identified using the distortion metric for different values of k. by the ellow wethod
- Note: For practical applications use DBSCAN clustering algorithm. It has strong convergence guarantees and works well!!