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Clustering Images
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Clustering Hand Digits
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Clustering is Subjective
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Are they similar or not?
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So What is Clustering in General?
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Properties of Similarity Function
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Distance Functions for Vectors
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Example
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Some problems with metric distances

12

x y

z

d(x,y) and d(x,z) ?
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Curse of dimensionality

https://stats.stackexchange.com/questions/99171/why-is-euclidean-distance-not-a-good-metric-in-high-dimensions#99191


Hamming Distance
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Edit Distance
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K-means clustering using intensity alone and color alone

Image Clusters on intensity Clusters on color

Results of K-Means Clustering:



K-means using color alone, 11 segments (clusters)

Image Clusters on color



* Pictures from Mean Shift: A Robust Approach toward Feature Space Analysis, by D. Comaniciu and P. Meer http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html



K-Means Algorithm
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K-Means Algorithm

20

Visualizing K-Means Clustering

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/


K-Means: Step 1
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K-Means: Step 2
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K-Means: Step 3
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K-Means: Step 4
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K-Means: Step 5
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Questions
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Formal Statement of the Clustering Problem
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Such that the averaged square distance from each data point to 
respective cluster center(distortion metric) is minimum:



Clustering is NP-Hard
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https://en.wikipedia.org/wiki/NP-hardness


n n

X = {A,B,C}

n=3 (data points)
k=2 clusters of two members

Cluster 1 Cluster 2



Convergence of K-Means
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Time Complexity

• Assume computing distance between two 
instances is O(d) where d is the dimensionality of 
the vectors.

• Reassigning clusters for all datapoints: 

‣ O(kn) distance computations (when there is one feature)

‣ O(knd) (when there is d features)

• Computing centroids: Each instance vector gets 
added once to some centroid (Finding centroid for 
each feature): O(nd).

• Assume these two steps are each done once for I 
iterations: O(Iknd).

32Slide credit: Ray Mooney.



How to Choose K?

33Image credit: Dileka Madushan.

Distortion score: computing the sum of squared 

distances from each point to its assigned center



k-Nearest Neighbors

• Algorithm:
‣ Find k examples {xi , ti } closest to the test instance x

‣ Classification output is majority class from the set of k instances

• Non-parametric

• Infinite VC dimension

• Dependent on distance matric

• Hard in higher dimensions



Takeaways

• Clustering is distance matric dependent

• K-means converges with every step to the minimum 
distortion metric

• Ideal value of number of clusters( k ) can be identified using 
the distortion metric for different values of k. 

• Note: For practical applications use DBSCAN clustering 
algorithm. It has strong convergence guarantees and works 
well!! 


