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Motivating Example: Data Visualization

53 blood and urine samples

o Matrix format (65x53) (features) from 65 people

H-WBC H-RBC H-Hgb H-Hct H-MCV H-MCH H-MCHC
. A1 8.0000 4.8200 141000 | 41.0000 | 85.0000 [ 29.0000 ( 34.0000
A2 7.3000 5.0200 14.7000 | 43.0000 | 86.0000( 29.0000| 34.0000
$ A3 4.3000 4.4800 14.1000 | 41.0000 91.0000 32.0000 35.0000
';:’ Ad 7.5000 4.4700 14.9000 | 45.0000 [ 101.0000 [ 33.0000 ( 33.0000
_{3 < AS 7.3000 5.5200 15.4000 | 46.0000 | 84.0000( 28.0000( 33.0000
8 Ab6 6.9000 4.8600 16.0000 [ 47.0000 97.0000 33.0000 34.0000
= A7 7.8000 4.6800 147000 | 43.0000 [ 92.0000 ( 31.0000( 34.0000
A8 8.6000 4.8200 15.8000 | 42.0000 | 88.0000( 33.0000| 37.0000
N A9 5.1000 4.7100 14.0000 | 43.0000 [ 92.0000 ( 30.0000( 32.0000
N
Y
Features

Difficult to see the correlations of different features



Motivating Example: Data Visualization

Is there a representation better than the coordinate axes?

Is it really necessary to show all the 53 dimensions?

e ... what if there are strong correlations between the
features?

How could we find
the smallest subspace of the 53-D space that
keeps the most information about the original data?

A Solution: Dimension Reduction




Another Example: Dimension Reduction for Text

What are the relations
between data points?
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Bag-of-Words Representations

document 1

Machine learning
concerns the

construction and
study of systems that
can learn from data.

vector in R"

document 2 ———=p Each documentis an Instance

Representation of
data instances and
functions evaluated
on these instances

are part of all
machine learning
systems

iInstance
function

HE N CC)EE RIS
HENEIOEEEE

Each word is a feature



Term-Document Data Matrix — Bag-of-words

database | SQL | index | regression | likelihood | linear
d1 24 21 9 0 0 3
d2 a2 10 5 0 3 0
d3 12 16 5 0 0 0
d4 6 7 . 0 0 0
d5 43 31 20 0 3 0
dé 2 0 0 18 / 16
d7 0 0 1 32 12 0
d8 3 0 0 22 4 2
d9 1 0 0 34 L 25
d10 6 0 0 17 - 23

Many more features



https://en.wikipedia.org/wiki/Document-term_matrix
Bag-of-words

What Is Dimension Reduction?

o The process of reducing the number of random variables under
consideration

¢ One can combine, transform or select variables
¢ One can use linear or nonlinear operations

Original data point Reduced representation

0 l l

0

[ X1 Z1

X Z
2 2

x =\ . f(x):R* — R zZ=1 :

.

[ Xd Zy

0 k«<d

0

vector in R¢



Applications of Dimension Reduction

» The dimension-reduced data can be used for
¢ Visualizing, exploring and understanding the data
o Aggregating weak signals in the data
¢ Cleaning the data
¢ Speeding up subsequent learning task
¢ Building simpler model later

» Key questions of a dimensionality reduction algorithm
¢ What is the criterion for carrying out the reduction process?
¢ What are the algorithm steps?
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PCA: Dimension Reduction by Capturing Variation

» There are many criteria (geometric based, information theory
based, etc.)

¢ One criterion: want to capture variation in data
¢ variations are “signals” or information in the data
¢ need to normalize each variables first

» In the process, also discover variables or dimensions highly
correlated

¢ represent highly related phenomena
¢ combine them to form a stronger signal
¢ lead to simpler presentation

11



Feature 2

Capturing Variation in Data

Data vary little
in this direction

"
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et .| Twofeatures
- . \* | arecorrelated

Feature 1
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Two Equivalent Perspectives of PCA

PCA:

Orthogonal projection of the data onto a lower-dimension linear
space that...

A maximizes variance of projected data (purple line)

dminimizes mean squared distance between
e data point and
e projections (sum of blue lines)

13
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What is variance equation? Var(x) = Ez(xi_“)z
i=1
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Formulating the Problem

» Given n data points, {x;, x5, ..., x,} € R* with their mean u =

=1

» Find a direction w € R4 where

Iwll = | ) w? =1

\ jEd

We constrain the norm of w to be
equal to one to avoid having very
large variance in each new
dimension.

16



» Given n data points, {x;,x,, ..., Xx,,} € R% with their mean u

1
— 2 — —
Iwll = | ) wp =1 p=s

\ j€d j

=

Xi

Il
—

» Such that the variance (or variation) of the data along direction
W is maximized

variance In new feature space



An Optimization Problem

» Manipulate the objective with linear algebra

n

1 1%
SO G = =) (aimw)? =
1=1

1=1
1w 1
= EE(CXL' - M)W)T((Xi —Ww) = Ez wh (=" O — w
=1 A B (=1
(AB)T = BTAT

WY G =) G- fw = wTCw
=1

Covariance matrix
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Equivalence to The Eigenvalue Problem

Claim:

max w!Cw
[lw]|=1

Form lagrangian function of the optimization problem
Lw, ) =w'Cw+1(1 — wtw)

If w is @ maximum of the original optimization problem, then
there exists a A, where (w, 1) is a stationary point of L(w, 4)

This implies that

oL
—=0=2Cw—-2Aw = Cw =Aw
dw

19



Eigen-Value Problem

» Eigen-value problem d. dimension

 Given a symmetric matrix C € R4*4
C Is also a positive semidefinite matrix

o Find avectorw € R% and ||w|| = 1

¢ Such that
Cw = Aw

» There will be multiple solution of wj,w,,...,wg for its corresponding
A, Ay, e, Ag

T T
o They are ortho-normal: w; w; =1 w; w; =0

20


https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
https://en.wikipedia.org/wiki/Definiteness_of_a_matrix

Eigenvalues and Eigenvectors

» Given a square matrix A € R4 *dwe say that A € Cis an
. d . . .
eigenvalue of Aand x € C is an eigenvector if

Ax = Ax, x #0

» Intuitively this means that upon multiplying the matrix A with a
vector x, we get the same vector, but scaled by a parameter 4

» Geometrically, we are transforming the matrix A from its
original orthonormal basis/co-ordinates to a new set of
orthonormal basis x with magnitude as 4



Computing Eigenvalues and Eigenvectors

» We can rewrite the original equation in the following manner
Ax = Ax, x #0
=> A—-A)x =0, x + 0

» This is only possible if (A — Al) is singular, thatis [(A—Al) | =
0.

» Thus, eigenvalues and eigenvectors can be computed.
o Compute the determinantof A — Al.
» This results in a polynomial of degree d.
¢ Find the roots of the polynomial by equating it to zero.
o The d roots are the d eigenvalues of A. They make A — Al singular.
» For each eigenvalue 4, solve (4 — Al) x to find an eigenvector x



Matrix Eigen Decomposition

» All the eigenvectors can be written together as AX = XA
where the columns of X are the eigenvectors of 4, and A is a
diagonal matrix whose elements are eigenvalues of A

» If the eigenvectors of A are invertible, then A = XAX ™1

» There are several properties of eigenvalues and eigenvectors
o Tr(4) = T4,
o |A] = TI%, A,
¢ Rank of A is the number of non-zero eigenvalues of A
o If A'is non-singular then 1/A; are the eigenvalues of A1

¢ The eigenvalues of a diagonal matrix are the diagonal elements
of the matrix itself!



Principal Direction of the Data

Feature 2

® Class(
B (Class

24



Variance in the Principal Direction

» Principal direction w satisfies

Cw = Aw = wA

» Variance in principal direction is

eigen-value

25



Multiple Principal Directions

» Directions wq, w,, ... which has

¢ the largest variances

¢ but are orthogonal to each other

» Take the eigenvectors wq, w,, ... of C corresponding to

¢ the largest eigenvalue 4,4,

o the second largest eigenvalue 4,

26



Extra Principal Directions

Feature 2

Feature 1

27



Relations Between Principal Components

Principal component #1: points in the direction of
the largest variance.

Each subsequent principal component
e is orthogonal to the previous ones, and

e points in the directions of the largest
variance of the residual subspace

28



The PCA Algorithm

» Givenn data points, {x{,x,, ...,x,} € R with mean

» Step 1: Estimate the mean and covariance matrix from data
n n

=% and =Y (- i) (x— )
'u_’l’l Xi an = 1xl )y Xi—H

» Step 2: Take the eigenvectors wq, w, , ..of C corresponding to
the largest eigenvalue A4, the second largest eigenvalue 4, ...

o Step 3: Compute reduced representation

_((xi—lh) (x; — H2) ) z=>nxk
Zi = W4 W-
01 03

k < d
Normalizing by /

standard deviation

=1 1=
Principal directions

29
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Singular Value Decomposition

n: instances
Xpxqg  d:dimensions
X IS a centered matrix — 1.e., mean subtracted!!

U,«, — unitary matrix - UxU" =1

X =Uzv" Ya.xa — diagonal matrix

Vixg — unitary matrix -V x V1 =1

_ ) _— Principle direction
L | ZM 0 0 [lel led]
. y . O O . " :
X = x| 0 0 ded X
0 O 0
U Un | | 0 0 0 1 [ Vaa oo o e Vg |
T
0 > d<n v

Matrix compression: K dimensions out of d 31



According to PCA =2 Cw = Aw = wA

Centering X
) X'X
Covariance Cyxg = — 1(x — ,u) (x — ,u) =

X =U0xyT
L _VETUTusvT vstyT
- XX B n T n
= — )
vyt 32
C = =V—V




32 32
CV=V=—VvTv=v—
n n

According to Eigen-decomposition definition =»CV = VA

V Is the eigen vectors of covariance (Principal directions)

2

O; - . .
A = 71 =» The eigenvalues of covariance matrix

Let’s project the data (X) on principal directions:
XV =U0zv'Vv = Uz
XV is independent linear combinations of the original data

Projection of one instance (x) on the first principal direction using k dimensions

P1 Uix121x1 » U1x222x2 s -+ » WixkZkxk]

U=>nXk
P2

Y=>k Xk

Upper left corner

Urw121x1 s Uax22Zax2 ) -« auZXkaXk]



22 Eigenvectors (principal directions) V
m

Eigen values A =

Jr

|
|
Principal components (Scores) or projections on principal directions

In fact, using the SVD to perform PCA makes much better sense
numerically than forming the covariance matrix to begin with, since
the formation of X' X can cause loss of precision.
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Why PCA potentially works In classification?

the dimension with the largest variance corresponds
to the dimension with the largest entropy and thus
encodes the most information (Information Theory).
The smallest eigenvectors will often simply represent
noise components, whereas the largest eigenvectors

often correspond to the principal components that
define the data.



https://en.wikipedia.org/wiki/Principle_of_maximum_entropy

Result with PCA — Algo. For Face detection

1. Treat each window in the image like a vector
[
M - X

2. Test whether x matches some ¥;in the database

SSD: (y; — x)°
Cross-correlation: y; - x
NCC, zero-mean NCC...

Slide by Derek Holem



Mean Face and Eigen Faces

Top eigenvectors: uy,...u,

Mean: u

Slide by Derek Hoiem



Modern approaches

® Auto-encoders!



Example low dimensional embedding of MNIST
dataset

s blog

J

® From Sebastian Polsterl



https://k-d-w.org/
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Summary

®* PCA
. Finds orthonormal basis for data
. Sorts dimensions in order of “importance”

. Discard low significance dimensions

® Uses
. (et concise low-dimensional representations

. Remove noise
® Not magic

. Doesn’t know class labels

. Can only capture linear variations

42



Image compression using PCA

PCs # 0 PCs # 10 PCs # 20




