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Motivating Example: Data Visualization

53 blood and urine samples

o Matrix format (65x53) (features) from 65 people

H-WBC H-RBC H-Hgb H-Hct H-MCV H-MCH H-MCHC
. A1 8.0000 4.8200 141000 | 41.0000 | 85.0000 [ 29.0000 ( 34.0000
A2 7.3000 5.0200 14.7000 | 43.0000 | 86.0000( 29.0000| 34.0000
$ A3 4.3000 4.4800 14.1000 | 41.0000 91.0000 32.0000 35.0000
';:’ Ad 7.5000 4.4700 14.9000 | 45.0000 [ 101.0000 [ 33.0000 ( 33.0000
_{3 < AS 7.3000 5.5200 15.4000 | 46.0000 | 84.0000( 28.0000( 33.0000
8 Ab6 6.9000 4.8600 16.0000 [ 47.0000 97.0000 33.0000 34.0000
= A7 7.8000 4.6800 147000 | 43.0000 [ 92.0000 ( 31.0000( 34.0000
A8 8.6000 4.8200 15.8000 | 42.0000 | 88.0000( 33.0000| 37.0000
N A9 5.1000 4.7100 14.0000 | 43.0000 [ 92.0000 ( 30.0000( 32.0000
N
Y
Features

Difficult to see the correlations of different features



Motivating Example: Data Visualization

Is there a representation better than the coordinate axes?

Is it really necessary to show all the 53 dimensions?

e ... what if there are strong correlations between the
features?

How could we find
the smallest subspace of the 53-D space that
keeps the most information about the original data?

A Solution: Dimension Reduction




Another Example: Dimension Reduction for Text

What are the relations
between data points?
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Bag-of-Words Representations

document 1

Machine learning
concerns the

construction and
study of systems that
can learn from data.

vector in R"

document 2 ———=p Each documentis an Instance

Representation of
data instances and
functions evaluated
on these instances

are part of all
machine learning
systems

iInstance
function
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Each word is a feature



Term-Document Data Matrix T Bag-of-words

database | SQL | index | regression | likelihood | linear
d1 24 21 9 0 0 3
d2 a2 10 5 0 3 0
d3 12 16 5 0 0 0
d4 6 7 . 0 0 0
d5 43 31 20 0 3 0
dé 2 0 0 18 / 16
d7 0 0 1 32 12 0
d8 3 0 0 22 4 2
d9 1 0 0 34 L 25
d10 6 0 0 17 - 23

Vd

e

Many more features



https://en.wikipedia.org/wiki/Document-term_matrix
Bag-of-words

What Is Dimension Reduction?

o The process of reducing the number of random variables under
consideration

¢ One can combine, transform or select variables
¢ One can use linear or nonlinear operations

Original data point Reduced representation
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Applications of Dimension Reduction

» The dimension-reduced data can be used for
¢ Visualizing, exploring and understanding the data
o Aggregating weak signals in the data
¢ Cleaning the data
¢ Speeding up subsequent learning task
¢ Building simpler model later

» Key questions of a dimensionality reduction algorithm
¢ What is the criterion for carrying out the reduction process?
¢ What are the algorithm steps?



Outline

AOverview

APrincipIe Component Analysis: Main Idea <G
AThe PCA Algorithm

APCA and SVD

ASummary

10



PCA: Dimension Reduction by Capturing Variation

» There are many criteria (geometric based, information theory
based, etc.)

¢ One criterion: want to capture variation in data
¢ variations are “signals” or information in the data
¢ need to normalize each variables first

» In the process, also discover variables or dimensions highly
correlated

¢ represent highly related phenomena
¢ combine them to form a stronger signal
¢ lead to simpler presentation
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Feature 2

Capturing Variation in Data

Data vary little
in this direction
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Two Equivalent Perspectives of PCA

PCA:

Orthogonal projection of the data onto a lower-dimension linear
space that...

A maximizes variance of projected data (purple line)

dminimizes mean squared distance between
e data point and
e projections (sum of blue lines)
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What is variance equation? W (W)
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Formulating the Problem

» Given ¢ data points, {® oM ko I N Y  with their mean u =

P .
~ (6))
€

o Find adirectionw €Y where

Ju |l b P
V N

We constrain the norm of w to be
equal to one to avoid having very
large variance in each new
dimension.
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» Given € data points, {0 ho M ho } N 'Y  with their mean u

W

16 6 p - B
e

» Such that the variance (or variation) of the data along direction
W is maximized

variance In new feature space



An Optimization Problem

» Manipulate the objective with linear algebra
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Covariance matrix
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Equivalence to The Eigenvalue Problem

Claim:

Form lagrangian function of the optimization problem
Liw,AD)=w'Cw+A1(1—-0 0 )

If w is @ maximum of the original optimization problem, then
there exists a A, where (w, 1) is a stationary point of L(w, 4)

This implies that

oL ,
—=0=2Cw—-2Aw + OUL _ U
ow =
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Eigen-Value Problem

» Eigen-value problem Q2 dimension

¢ Given a symmetric matrix C €'Y
C Is also a positive semidefinite matrix

e Findavectorw €Y and|lw|l =1

¢ Such that
Cw = Aw

A4

» There will be multiple solutionof 0 M) B )  for its corresponding
_h mBh

o They are ortho-normal: 0 U P L U TT

20


https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
https://en.wikipedia.org/wiki/Definiteness_of_a_matrix

Eigenvalues and Eigenvectors
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