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Announcements

• Forms: Class feedback. 

• Peer review feedback form due!!!

• Touchpoints next week – Physical preference forms out this weekend
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Computational Learning Theory

• Large sub-field

• Conference on Learning theory

• What problems are solvable?

• How many samples do we need to solve a novel problem?

• How well will the algorithm generalize?

• Slides largely from materials developed by Vivek Srikumar. 

https://svivek.com/


PAC learning

• For batch learning

• Asks how well will your learner generalize to unsee data in the wild



Problem setup
• Instance Space: X, the set of examples

• Concept Space: C, the set of possible target functions: f ∈ C is the hidden 
target function
• Example: all n-conjunctions; all n-dimensional linear functions…

• Hypothesis Space: H, set of possible hypotheses
• Set of functions the learning algorithm considers
• Different from C, whose form might not be known!!

• Training instances: S×{−1,1}: positive and negative examples of the target 
concept. (S is a finite subset of X)
• (x1, f(x1)), (x2, f(x2)), (x3, f(x3)), …………………(xn, f(xn))

• What we want: A hypothesis h ∈ H such that h(x) = f(x)
• For x in S???
• For x in X???



Problem setup
• Instance Space: X, the set of examples

• Concept Space: C, the set of possible target functions: f ∈ C is the 
hidden target function
• Example: all n-conjunctions; all n-dimensional linear functions…

• Hypothesis Space: H, set of possible hypotheses
• Set of functions the learning algorithm considers

• Training instances: S×{−1,1}: positive and negative examples of the 
target concept. (S is a finite subset of X)

• S sampled from X using a distribution D

• What we want: A hypothesis h ∈ H such that h(x) = f(x)
• Evaluation on more samples from X using D



True Error of a hypothesis (not empirical)

Definition:

Given a distribution D over examples, the error of a hypothesis ℎ with 
respect to a target concept f is:

ED(h) = PrD[h(x) ≠ f(x)]
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Theoretical Questions?

• Can we describe or bound the true error (ED) given the empirical error 
(ES)? 

• Is a concept class C learnable? 

• Is it possible to learn C using only the functions in H using the 
supervised protocol?  

• How many examples does an algorithm need to guarantee good 
performance?



Expectations of learning

• We cannot expect a learner to learn a concept exactly
• There will generally be multiple concepts consistent with the available data 

(which represent a small fraction of the available instance space) 

• Unseen examples could potentially have any label 

• Let’s “agree” to misclassify uncommon examples that do not show up in the 
training set 

• We cannot always expect to learn a close approximation to the target 
concept 
• Sometimes (hopefully only rarely) the training set will not be representative 

(will contain uncommon examples)



What we can expect

A learner will with high probability learn a close 
approximation of the target concept.



Probably approximately correct??? 

•Provide small parameters ε and δ, 

•With probability at least 1 − δ, a learner produces a 
hypothesis with error at most ε

• The only reason we can hope for this is the consistent 
distribution assumption



PAC definition
Consider a concept class C defined over an instance space X (containing 
instances of length n), and a learner L using a hypothesis space H

The concept class C is PAC learnable by L using H if:
for all f ∈ C ,

for all distribution D over X and fixed 0 < ε , δ < 1

given m examples sampled independently according to D, with probability 
at least (1 − δ), the algorithm L produces a hypothesis ℎ ∈ H that has error 
at most ε,

where m is polynomial in 1⁄ ε, 1⁄ δ, n and size(H).
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for all distribution D over X and fixed 0 < ε , δ < 1

given m examples sampled independently according to D, with probability 
at least (1 − δ), the algorithm L produces a hypothesis ℎ ∈ H that has error 
at most ε,

where m is polynomial in 1⁄ ε, 1⁄ δ, n and size(H).

Given a small number of examples



PAC definition
Consider a concept class C defined over an instance space X (containing 
instances of length n), and a learner L using a hypothesis space H

The concept class C is PAC learnable by L using H if:
for all f ∈ C ,

for all distribution D over X and fixed 0 < ε , δ < 1

given m examples sampled independently according to D, with probability 
at least (1 − δ), the algorithm L produces a hypothesis ℎ ∈ H that has error 
at most ε,

where m is polynomial in 1⁄ ε, 1⁄ δ, n and size(H).

With High Probability



PAC definition
Consider a concept class C defined over an instance space X (containing 
instances of length n), and a learner L using a hypothesis space H

The concept class C is PAC learnable by L using H if:
for all f ∈ C ,

for all distribution D over X and fixed 0 < ε , δ < 1

given m examples sampled independently according to D, with probability 
at least (1 − δ), the algorithm L produces a hypothesis ℎ ∈ H that has error 
at most ε,

where m is polynomial in 1⁄ ε, 1⁄ δ, n and size(H).
The learner will produce a 
“good enough” classifier



PAC definition
Consider a concept class C defined over an instance space X (containing 
instances of length n), and a learner L using a hypothesis space H

The concept class C is PAC learnable by L using H if:
for all f ∈ C ,

for all distribution D over X and fixed 0 < ε , δ < 1

given m examples sampled independently according to D, with probability at 
least (1 − δ), the algorithm L produces a hypothesis ℎ ∈ H that has error at most ε,

where m is polynomial in 1⁄ ε, 1⁄ δ, n and size(H).

The concept class C is efficiently learnable if L can produce the hypothesis in 
time that is polynomial in 1⁄ ε, 1⁄ δ, n and size(H).



PAC Learnability
• Imposes two limitations 

• Polynomial sample complexity (information theoretic constraint) 
• Is there enough information in the sample to distinguish a hypothesis h that approximates f ? 

• Polynomial time complexity (computational complexity) 
• Is there an efficient algorithm that can process the sample and produce a good hypothesis h ? 

• To be PAC learnable, there must be a hypothesis h ∈ H with arbitrary small 
error for every f ∈ C. We assume H ⊇ C. (Properly PAC learnable if H=C) 

• Worst Case definition: the algorithm must meet its accuracy 
• for every distribution (The distribution free assumption) 

• for every target function f in the class C



Results with PAC learnability
• General conjunctions are PAC learnable!!!

• a ∧ b ∧ c ∧ d ∧ e
• Sample complexity linear in in n the number of variables

• 3-CNFs are PAC learnable 
• Example – ( a V b V c ) ∧ ( x v y v z )
• Sample complexity polynomial in n the number of 3 conjuncts

• General Boolean functions not PAC learnable
• Number of possible Boolean functions with n variables:  22n

• Size of H is super-exponential

• Turing Award for Leslie Valiant ☺



Negative result strategies

Generally two types of non-learnability results 

1. Complexity Theoretic (computational complexity bad) –
Showing that various concepts classes cannot be learned, based on well 
accepted assumptions from computational complexity theory – Takes the form 
“A concept class C cannot be learned unless P=NP” 

2. Information Theoretic (sample complexity bad) –
The concept class is sufficiently rich that a polynomial number of examples may 
not be sufficient to distinguish a particular target concept – The proof typically 
shows that a given class cannot be learned by algorithms using hypotheses 
from the same class. (Is this always a problem?)
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Problem

• After training a model we have some training error

• How do we know what kind of test error to expect?

• How do we know which of the possible models is the best?

• How do we know if one hypothesis class is better than the other?



A Measure of Model Complexity 

• Pick n points 

• Assign labels to them randomly (+ve and –ve)

• Can our hypothesis class separate the data points exactly? 



Two points and linear hypothesis class

• Can a linear classifier split any two points?



Two points and linear hypothesis class

• We say that linear functions are expressive enough to shatter two 
points



Shattering

Definition: A set S of examples is shattered by a set of functions H if for 
every partition of the examples in S into positive and negative examples 
there is a function in H that gives exactly these labels to the examples 

Intuition: A rich set of functions shatters large sets of points



Three points and linear hypothesis class

Slide inspired from those of Geoff Hinton and Byron Boots



Four or more points??



Vapnik-Chervonenkis (VC) dimension

Definition: The VC dimension of hypothesis space H over instance 
space X is the size of the largest finite subset of X that is shattered by H 

• If there exists any subset of size d that can be shattered, VC(H) >= d – Even 
one subset will do 

• If no subset of size d can be shattered, then VC(H) < d



Example VC dimensions
Concept Class VC dimension

Linear threshold unit in d dimensions d + 1

Neural networks Number of parameters

1 nearest neighbor Infinite

Sine Wave / Curve Infinite



VC dimension

• VC dimensions a measure of richness or size of the H

• If we have m examples, then with probability 1 − δ, the true error of a 
hypothesis h with training error ES(ℎ) is bounded by:

ES(ℎ) ≤ 𝐸D(h) +



Take away

• Probably approximately correct:  Tells us if a concept class is learnable 
with high probability and with low generalization error with few 
examples.

• Allows us to define learnable concepts and distinguish efficient 
algorithms

• VC dimension presents a measure of the model/ hypothesis 
complexity

• PAC learning provides a way to create a bound on the test error using 
VC dimensions of the hypothesis class.


