
Computational Learning
Theory

Nakul Gopalan

Slides based on material from Vivek Srikumar, Dan Roth, Avrim Blum, Tom Mitchell and others

Announcements

• Forms: Class feedback.

• Peer review feedback form due!!!

• Touchpoints next week – Physical preference forms out this weekend

Contents

• Computational Learning theory

• Probably Approximately Correct

• Vapnik-Chervonenkis (VC) dimension

Computational Learning Theory

• Large sub-field

• Conference on Learning theory

• What problems are solvable?

• How many samples do we need to solve a novel problem?

• How well will the algorithm generalize?

• Slides largely from materials developed by Vivek Srikumar.

https://svivek.com/

PAC learning

• For batch learning

• Asks how well will your learner generalize to unsee data in the wild

Problem setup
• Instance Space: X, the set of examples

• Concept Space: C, the set of possible target functions: f ∈ C is the hidden
target function
• Example: all n-conjunctions; all n-dimensional linear functions…

• Hypothesis Space: H, set of possible hypotheses
• Set of functions the learning algorithm considers
• Different from C, whose form might not be known!!

• Training instances: S×{−1,1}: positive and negative examples of the target
concept. (S is a finite subset of X)
• (x1, f(x1)), (x2, f(x2)), (x3, f(x3)), …………………(xn, f(xn))

• What we want: A hypothesis h ∈ H such that h(x) = f(x)
• For x in S???
• For x in X???

Problem setup
• Instance Space: X, the set of examples

• Concept Space: C, the set of possible target functions: f ∈ C is the
hidden target function
• Example: all n-conjunctions; all n-dimensional linear functions…

• Hypothesis Space: H, set of possible hypotheses
• Set of functions the learning algorithm considers

• Training instances: S×{−1,1}: positive and negative examples of the
target concept. (S is a finite subset of X)

• S sampled from X using a distribution D

• What we want: A hypothesis h ∈ H such that h(x) = f(x)
• Evaluation on more samples from X using D

True Error of a hypothesis (not empirical)

Definition:

Given a distribution D over examples, the error of a hypothesis ℎ with
respect to a target concept f is:

ED(h) = PrD[h(x) ≠ f(x)]

Contents

• Computational Learning theory

• Probably Approximately Correct

• Vapnik-Chervonenkis (VC) dimension

Theoretical Questions?

• Can we describe or bound the true error (ED) given the empirical error
(ES)?

• Is a concept class C learnable?

• Is it possible to learn C using only the functions in H using the
supervised protocol?

• How many examples does an algorithm need to guarantee good
performance?

Expectations of learning

• We cannot expect a learner to learn a concept exactly
• There will generally be multiple concepts consistent with the available data

(which represent a small fraction of the available instance space)

• Unseen examples could potentially have any label

• Let’s “agree” to misclassify uncommon examples that do not show up in the
training set

• We cannot always expect to learn a close approximation to the target
concept
• Sometimes (hopefully only rarely) the training set will not be representative

(will contain uncommon examples)

What we can expect

A learner will with high probability learn a close
approximation of the target concept.

Probably approximately correct???

•Provide small parameters ε and δ,

•With probability at least 1 − δ, a learner produces a
hypothesis with error at most ε

• The only reason we can hope for this is the consistent
distribution assumption

PAC definition
Consider a concept class C defined over an instance space X (containing
instances of length n), and a learner L using a hypothesis space H

The concept class C is PAC learnable by L using H if:
for all f ∈ C ,

for all distribution D over X and fixed 0 < ε , δ < 1

given m examples sampled independently according to D, with probability
at least (1 − δ), the algorithm L produces a hypothesis ℎ ∈ H that has error
at most ε,

where m is polynomial in 1⁄ ε, 1⁄ δ, n and size(H).

PAC definition
Consider a concept class C defined over an instance space X (containing
instances of length n), and a learner L using a hypothesis space H

The concept class C is PAC learnable by L using H if:
for all f ∈ C ,

for all distribution D over X and fixed 0 < ε , δ < 1

given m examples sampled independently according to D, with probability
at least (1 − δ), the algorithm L produces a hypothesis ℎ ∈ H that has error
at most ε,

where m is polynomial in 1⁄ ε, 1⁄ δ, n and size(H).

Given a small number of examples

PAC definition
Consider a concept class C defined over an instance space X (containing
instances of length n), and a learner L using a hypothesis space H

The concept class C is PAC learnable by L using H if:
for all f ∈ C ,

for all distribution D over X and fixed 0 < ε , δ < 1

given m examples sampled independently according to D, with probability
at least (1 − δ), the algorithm L produces a hypothesis ℎ ∈ H that has error
at most ε,

where m is polynomial in 1⁄ ε, 1⁄ δ, n and size(H).

With High Probability

PAC definition
Consider a concept class C defined over an instance space X (containing
instances of length n), and a learner L using a hypothesis space H

The concept class C is PAC learnable by L using H if:
for all f ∈ C ,

for all distribution D over X and fixed 0 < ε , δ < 1

given m examples sampled independently according to D, with probability
at least (1 − δ), the algorithm L produces a hypothesis ℎ ∈ H that has error
at most ε,

where m is polynomial in 1⁄ ε, 1⁄ δ, n and size(H).
The learner will produce a
“good enough” classifier

PAC definition
Consider a concept class C defined over an instance space X (containing
instances of length n), and a learner L using a hypothesis space H

The concept class C is PAC learnable by L using H if:
for all f ∈ C ,

for all distribution D over X and fixed 0 < ε , δ < 1

given m examples sampled independently according to D, with probability at
least (1 − δ), the algorithm L produces a hypothesis ℎ ∈ H that has error at most ε,

where m is polynomial in 1⁄ ε, 1⁄ δ, n and size(H).

The concept class C is efficiently learnable if L can produce the hypothesis in
time that is polynomial in 1⁄ ε, 1⁄ δ, n and size(H).

PAC Learnability
• Imposes two limitations

• Polynomial sample complexity (information theoretic constraint)
• Is there enough information in the sample to distinguish a hypothesis h that approximates f ?

• Polynomial time complexity (computational complexity)
• Is there an efficient algorithm that can process the sample and produce a good hypothesis h ?

• To be PAC learnable, there must be a hypothesis h ∈ H with arbitrary small
error for every f ∈ C. We assume H ⊇ C. (Properly PAC learnable if H=C)

• Worst Case definition: the algorithm must meet its accuracy
• for every distribution (The distribution free assumption)

• for every target function f in the class C

Results with PAC learnability
• General conjunctions are PAC learnable!!!

• a ∧ b ∧ c ∧ d ∧ e
• Sample complexity linear in in n the number of variables

• 3-CNFs are PAC learnable
• Example – (a V b V c) ∧ (x v y v z)
• Sample complexity polynomial in n the number of 3 conjuncts

• General Boolean functions not PAC learnable
• Number of possible Boolean functions with n variables: 22n

• Size of H is super-exponential

• Turing Award for Leslie Valiant ☺

Negative result strategies

Generally two types of non-learnability results

1. Complexity Theoretic (computational complexity bad) –
Showing that various concepts classes cannot be learned, based on well
accepted assumptions from computational complexity theory – Takes the form
“A concept class C cannot be learned unless P=NP”

2. Information Theoretic (sample complexity bad) –
The concept class is sufficiently rich that a polynomial number of examples may
not be sufficient to distinguish a particular target concept – The proof typically
shows that a given class cannot be learned by algorithms using hypotheses
from the same class. (Is this always a problem?)

Contents

• Computational Learning theory

• Probably Approximately Correct

• Vapnik-Chervonenkis (VC) dimension

Problem

• After training a model we have some training error

• How do we know what kind of test error to expect?

• How do we know which of the possible models is the best?

• How do we know if one hypothesis class is better than the other?

A Measure of Model Complexity

• Pick n points

• Assign labels to them randomly (+ve and –ve)

• Can our hypothesis class separate the data points exactly?

Two points and linear hypothesis class

• Can a linear classifier split any two points?

Two points and linear hypothesis class

• We say that linear functions are expressive enough to shatter two
points

Shattering

Definition: A set S of examples is shattered by a set of functions H if for
every partition of the examples in S into positive and negative examples
there is a function in H that gives exactly these labels to the examples

Intuition: A rich set of functions shatters large sets of points

Three points and linear hypothesis class

Slide inspired from those of Geoff Hinton and Byron Boots

Four or more points??

Vapnik-Chervonenkis (VC) dimension

Definition: The VC dimension of hypothesis space H over instance
space X is the size of the largest finite subset of X that is shattered by H

• If there exists any subset of size d that can be shattered, VC(H) >= d – Even
one subset will do

• If no subset of size d can be shattered, then VC(H) < d

Example VC dimensions
Concept Class VC dimension

Linear threshold unit in d dimensions d + 1

Neural networks Number of parameters

1 nearest neighbor Infinite

Sine Wave / Curve Infinite

VC dimension

• VC dimensions a measure of richness or size of the H

• If we have m examples, then with probability 1 − δ, the true error of a
hypothesis h with training error ES(ℎ) is bounded by:

ES(ℎ) ≤ 𝐸D(h) +

Take away

• Probably approximately correct: Tells us if a concept class is learnable
with high probability and with low generalization error with few
examples.

• Allows us to define learnable concepts and distinguish efficient
algorithms

• VC dimension presents a measure of the model/ hypothesis
complexity

• PAC learning provides a way to create a bound on the test error using
VC dimensions of the hypothesis class.

