Machine Learning CS 4641 Georgia
Tech

Support Vector Machine

Nakul Gopalan
Georgia Tech

These slides are based on slides from Andrew Zisserman, Yaser S. Abu-Mostafa, Mahdi Roozbahani



Outline

® Precursor: Linear Classifier and Perceptron <G
® Support Vector Machine

® Parameter Learning



Binary Classification

Given training data (x;,vy;) forz =1... N, with
x; € R% and y; € {—1, 1}, learn a classifier f(x)

such that
>0 1
£ (i) { 5

i.e. y;f(x;) > 0 for a correct classification.
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Linear Classifier

A linear classifier has the form

f(x) =0

f(x) =x0+ 6, hh

6,/ C/D 109 <0
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f(x)>0

* in 2D the discriminant is a line
« @ isthe normal to the line, and8,the bias

« O is known as the weight vector




Linear Classifier (higher dimension)

f(x) =0

A linear classifier has the form A

f(x) =x0 + 0,

3

 in 3D the discriminant is a plane, and in nD it is a hyperplane



Perceptron Algorithm

Input: A sequence of training examples (x;, y,), (X5, Y,),- -

where all x, € R", y; € {-1,1}

* Initialize w,=0 € R"
* For each training example (x;, y.):
— Predict y’ = sgn(w,"x.)

— Ify. 2y’
* Update wy,; <w, +r (y; X))

 Return final weight vector

These slides are from Vivek Srikumar

Mistake on positive: w,,, < w, +rXx
Mistake on negative: w,,, <« w, - rx

ris the learning rate, a small positive
number less than 1

Update only on error. A mistake-
driven algorithm

This is the simplest version. We will
see more robust versions at the end

Mistake can be written as yw,'x. < 0




Mistake on positive: w,,, < W, + 1 X,
Mistake on negative: w,,, « w,-rx

Geometry of the perceptron update

‘ Predict ‘ Update ‘ ‘ After ‘
V

wold

(x, +1)

For a mistake on a positive
example

These slides are from Vivek Srikumar



Linear separation

We can have different separating lines

Why is the bigger margin better?

Which line is the best? —

What 6 maximizes the margin?

N ——

All cases, error is zero and
they are linear, so they are
all good for generalization.




What Is the Best 67

* maximum margin solution: most stable under perturbations of the inputs
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- if the data is linearly separable, then the algorithm will converge
* convergence can be slow ...
» separating line close to training data

- we would prefer a larger margin for generalization (better generalization)
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3

Finding 6 with a fat margin

Solution (decision boundary) of the line: x60 =0

)

Let X; to be the nearest data point to the line (plane):
|X18| > (

Our line solutionis x8 = 0

X1

Does it matter if & is scaled up or down for the decision boundary?




Finding 6 with a fat margin

Solution (decision boundary) of the line: x60 =0

)

Let X; to be the nearest data point to the line (plane):

|Xl8| > 0

Our line solution is x8 = 0

Does it matter if 6 is scaled up or down for the decision
X4 boundary?

|x;0] = 1 = normalization

Let’s pull out HO from 0 = (91, . Hd) and call it be b

73 Decision boundary would be: X6 + b = 0



Computing the distance

The distance between x; and the line x60 + b =0  where |x;0 + b| =1

The vector 0 is perpendicular to the decision line.

X2

Consider x’and x on the plane

x'64+b=0 and x6+b=0
! 2

x'0+b=x0+Db

m (X'—x )0 =0




What Is the distance of my fat margin?

What is the distance between x; and the plane?

Let’s take any point X on the line:

Distance would be projection of (x; — x) vector on 6.

To project the vector, we need to normalize 6 to get the unit vector.

6 = distance = ‘ (x; — x)@‘ which is the dot product

X2
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What Is the distance of my fat margin?

What is the distance between x; and the plane?

Let’s take any point X on the line:

Distance would be projection of (x; — x) vector on 6.

To project the vector, we need to normalize 6 to get the unit vector.

~ 0 _ ~
0= T = distance = ‘ (x; — x)@‘ which is the dot product

X2

distance = ——|(x;0 — x0)|
|I9|| l

101 "~— ——"" |]9]]
My constraint A point on the
|X-9+b| — 1 decision line \
l x0+b=0

The margin




Now we need to maximize the margin

1

Maximize ——
6]

Subjectto Min value of |x;60 + b| = 1 = nearest neighbour
1 =12,..,N

There is a "min” in our constraining; it can be hard to optimize this problem(non-convex form)

Can | write the following term to get rid of absolute value?

|%;0 + b| = y;(x;0 + b) = for a correct classification

If min |x;0 + b| =1 = so it can be at least 1

1
Maximize ———

[191]
Subjectto  y;(x;60 +b) =1 for i

1,2,...,N



® Class 2
B Class 1

yl-(xl-H b) > 1

Maximize ——
1161

Subjectto  y;(x;60 +b) =1 for i=12,..,N

Lo 1
Minimize EHHT

Subjectto  y;(x;0 +b) =1 for i=12,.. N



Constrained optimization

L 1
Minimize EHHT

Subjectto  y;(x;60 +b) =1 for i=12,..,N

6 € R4, beER
Using Lagrange method: But wait, there is an inequality in our constraints

We use Karush-Kuhn-Tucker (KKT) condition to deal with this problem



http://cs229.stanford.edu/notes/cs229-notes3.pdf

Constrained optimization

L 1
Minimize EHHT

Subjectto  y;(x;60 +b) =1 for i=12,..,N

6 € R4, beER
Using Lagrange method: But wait, there is an inequality in our constraints

We use Karush-Kuhn-Tucker (KKT) condition to deal with this problem

gx) = y;(x;06 +b) —1 o = lagrange multiplier

We need to optimize
1) g(x) =0 Primal feasibility 0,b,and

2) =0 Dual feasibility
(g(x) >0, o=

3 x)oo =10
) g(x) Complementary slackness = 1“ S0 () =



http://cs229.stanford.edu/notes/cs229-notes3.pdf

gx) = y;(x;06+b)—1

3) g(x)a =0 Complementary slackness = -

® Class 2
B Class 1

(g(x) >0, «a=

a >0, glx)=0



Lagrange formulation

L 1
Minimize EQQT S.t. y;(x;60 +b)—1=0

N
1
£0,b,@) =500" = > ai(yi (0 +b) = 1)

=1

Minimize w.r.t 6 and b and maximize w.r.t each a; > 0

N
\79 L(H, b, CX) =0 — Z adiVYiXi = 0
1=1

N

Vb 1:(9,1?, C() — —Zaiyi =0

=1



Let’s substitute these in the Lagrangian:

N

L(Q, b, CZ) — %QHT — Z ai(yi(xiH + b) — 1)
=1

N 1 N

£(0,b, ) = z @i +007 - Z o (v (2,0 + b))

= = 1
N N N

L(O,b,a) = Z a; + HHT Z al(yl(xlé?) = ) q; +%9¢9T — 00T =

i=1 i=1 i=1

N
Zal ——HHT

=1




N

2 A YiXi Z “@yi =0

=1

1
L(8,b,a) = Z a; —EHHT

N LA
L(H,b,a)=2ai EZZyly]aaxx

=1

iy
|

p—
iy
[

p—
.

maximize w.rt eacha; =20fori=1,..,N

and

N
zaiyi =0

=1



he solution — quadratic programming

N N N
1 T
mo?xz: a; — EZZyly]aaxx]

=1 =1 j=1

Quadratic programming packages usually use “min”

N N
T
Zyly]aaxx] zai

N |
1=

min
04
=1 j=1 =1
- T T T 1
Y1Y1X1X1 Y1Y2X1Xp .. Y1YNX1XN
1 T T T
T|Y2Y1X2X1  Y2Y2X2X5 Y2YVNX2XN
min— o
a 2 e L e
T T T
YNY1XNX1  YNY2XNX2 YNYNXNXN

(=)«



- T T T -
YiY1X1X1  YiYiX1X2 ... V1VYNX1XN
1 T T T
min— o7 | Y2Y1X2X1  VaYaXaXa ™ Y2VNX2AN | o 4+ (= 1)«
a 2 - - - ——
YNY1XNX1  YNY2XnX2 v YnYnXnXyl o Linearterm
\_ J
Y
Quadratic coefficients
|
. N Pass these to a
Subject to z ay;=y'a=0 quadratic programming
=l J package

Linear equality constraint

lower bound(0) < « < upper bound(oo)



mln aTQa Ta subject to yla=0,0a>0
Quadratic programming will give us «

Solution: o = a4, ..., ay

KKT condition (a;g;(6) = 0): a;(y;(x;06 +b) —1) =0
(yi(x;06 +b)—1)>0 = a; =0
(y;(x;6 +b)—1) =0 = a; > 0 = x; s a support vector

® Class 2
B Class 1




Training

N

— 2 Ui YiXi

=1

No need to go over all datapoints

— 0= z A YiXi

x;in SV

and for b pick any support
vector and calculate:
yi(xl-H + b) =1

Testing

For a new test point s

Compute:

s +b = 2 C(iyixiST + b

x;in SV

Classify s as class 1 if the result Is
positive, and class 2 otherwise



Training

N

— 2 Ui YiXi

=1

No need to go over all datapoints

— 0= z A YiXi

x;in SV

and for b pick any support
vector and calculate:
yi(xl-H + b) =1



Geometric Interpretation

linearly separable data 4
o : . 2 2
- Margin = =
1 EVCEY
O
. O
. .
Support Vector '
@ @ Support Vector ®
. PY :
: e
: ®
Xi0 +b=1"° 3
x0+b=0 ¢
i o
xiH + b=-—1 i ®
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From x to z space
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In x space

[M1=
K
ol
[
=
=
8
K
=

] M3 f o =1}

let'ssay xisnXxd
xx! willben X n

If | add millions of

dimensions to X, would
It affect the final size of

b xx1?
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In x space, they are called pre-images of support vectors
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Take-Home Messages

® Linear Separability
® Perceptron

® SVM: Geometric Intuition and Formulation
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