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Outline

• Precursor: Linear Classifier and Perceptron

• Support Vector Machine

• Parameter Learning
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Binary Classification
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Linear Separability
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Linear Classifier
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𝜃0 / c / b

𝜃

𝜃

𝜃0



Linear Classifier (higher dimension)
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𝑓(𝑥) = 𝑥𝜃 + 𝜃0



Perceptron Algorithm

These slides are from Vivek Srikumar



These slides are from Vivek Srikumar



Linear separation

We can have different separating lines

Which line is the best?

Why is the bigger margin better?

What 𝜽 maximizes the margin?
All cases, error is zero and 

they are linear, so they are 

all good for generalization.
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What is the Best 𝜃?
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(better generalization)



Outline

• Precursor: Linear Classifier and Perceptron

• Support Vector Machine

• Parameter Learning
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Finding 𝜃 with a fat margin

Solution (decision boundary) of the line: 𝑥𝜃 = 0

𝑥𝑖𝜃 < 0

𝑥𝑖𝜃 > 0

Let 𝒙𝒊 to be the nearest data point to the line (plane):

𝑥𝑖𝜃 > 0

Our line solution is 𝑥𝜃 = 0

Does it matter if 𝜃 is scaled up or down for the decision boundary? 
𝑥𝜃 =

𝑥1

𝑥2



Finding 𝜃 with a fat margin

Solution (decision boundary) of the line: 𝑥𝜃 = 0

𝑥𝑖𝜃 < 0

𝑥𝑖𝜃 > 0

Let 𝒙𝒊 to be the nearest data point to the line (plane):

𝑥𝑖𝜃 > 0

Our line solution is 𝑥𝜃 = 0

Does it matter if 𝜃 is scaled up or down for the decision 

boundary? 

𝑥𝑖𝜃 = 1→ normalization

Let’s pull out 𝜃0 from 𝜃 = 𝜃1, … , 𝜃𝑑 and call it be 𝑏

Decision boundary would be: 𝑥𝜃 + 𝑏 = 0

𝑥𝜃 =

𝑥1

𝑥2



Computing the distance

The distance between 𝒙𝒊 and the line 𝑥𝜃 + 𝑏 = 0 where 𝑥𝑖𝜃 + 𝑏 = 1

The vector 𝜃 is perpendicular to the decision line. 

Consider 𝑥′and 𝑥" on the plane

𝑥′𝜃 + 𝑏 = 0 and  𝑥"𝜃 + 𝑏 = 0

(𝑥′−𝑥")𝜃 = 0
𝑥1

𝑥2

𝑥′

𝑥"
𝑥𝑖

𝑥𝑖𝑥′𝜃 + 𝑏 = 𝑥"𝜃 + 𝑏

𝜃



What is the distance of my fat margin?

What is the distance between 𝑥𝑖 and the plane? 

Let’s take any point 𝑥 on the line:

Distance would be projection of (𝑥𝑖 − 𝑥) vector on 𝜃. 

To project the vector, we need to normalize 𝜃 to get the unit vector. 

θ =
𝜃

||𝜃||
⇒ distance = (𝑥𝑖 − 𝑥)θ which is the dot product

𝑥1

𝑥2

𝑥 𝑥𝑖

𝑥𝑖

?

?

𝜃

𝜃

1

||𝜃||

1

||𝜃||



What is the distance of my fat margin?

What is the distance between 𝑥𝑖 and the plane? 

Let’s take any point 𝑥 on the line:

Distance would be projection of (𝑥𝑖 − 𝑥) vector on 𝜃. 

To project the vector, we need to normalize 𝜃 to get the unit vector. 

θ =
𝜃

||𝜃||
⇒ distance = (𝑥𝑖 − 𝑥)θ which is the dot product

distance =
1

||𝜃||
(𝑥𝑖𝜃 − 𝑥𝜃)

=
1

||𝜃||
(𝑥𝑖𝜃 + 𝑏 − 𝑥𝜃 − 𝑏) =

1

||𝜃||

The margin 𝑥1

𝑥2

𝑥 𝑥𝑖

𝑥𝑖

𝜃

𝜃

A point on the 

decision line

My constraint

𝑥𝑖𝜃 + 𝑏 = 1
𝑥𝜃 + 𝑏 = 0

1

||𝜃||

1

||𝜃||



Now we need to maximize the margin

Maximize 
1

||𝜃||

Subject to Min value of  𝑥𝑖𝜃 + 𝑏 = 1 ⇒ 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟
𝑖 = 1,2, … ,𝑁

There is a “min” in our constraining; it can be hard to optimize this problem(non-convex form)

𝑥𝑖𝜃 + 𝑏 = 𝑦𝑖 𝑥𝑖𝜃 + 𝑏 ⇒ for a correct classification

Can I write the following term to get rid of absolute value?

Maximize

Subject to 𝑦𝑖 𝑥𝑖𝜃 + 𝑏 ≥ 1 for 𝑖 = 1,2, … ,𝑁

If min  𝑥𝑖𝜃 + 𝑏 = 1 ⇒ 𝑠𝑜 𝑖𝑡 𝑐𝑎𝑛 𝑏𝑒 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 1

1

||𝜃||



𝑥𝑖𝜃 + 𝑏 = 1

𝑥𝜃 + 𝑏 = 0

𝑥𝑖𝜃 + 𝑏 = −1

Class 2

Class 1

1

||𝜃||
1

||𝜃||

𝑦𝑖 𝑥𝑖𝜃 + 𝑏 > 1

Maximize

Subject to 𝑦𝑖 𝑥𝑖𝜃 + 𝑏 ≥ 1 for 𝑖 = 1,2, … ,𝑁

1

||𝜃||

Minimize

Subject to 𝑦𝑖 𝑥𝑖𝜃 + 𝑏 ≥ 1 for 𝑖 = 1,2, … ,𝑁

1

2
𝜃𝜃𝑇



𝑥𝑖𝜃 + 𝑏 = 1

𝑥𝜃 + 𝑏 = 0

𝑥𝑖𝜃 + 𝑏 = −1

Class 2

Class 1

1

||𝜃||
1

||𝜃||

𝑦𝑖 𝑥𝑖𝜃 + 𝑏 > 1

Minimize 
1

2
𝜃𝜃𝑇

Subject to 𝑦𝑖 𝑥𝑖𝜃 + 𝑏 ≥ 1 for 𝑖 = 1,2, … ,𝑁







Constrained optimization

Minimize 
1

2
𝜃𝜃𝑇

Subject to 𝑦𝑖 𝑥𝑖𝜃 + 𝑏 ≥ 1 for 𝑖 = 1,2, … ,𝑁

𝜃 ∈ ℝ𝑑 , 𝑏 ∈ ℝ

Using Lagrange method: But wait, there is an inequality in our constraints

We use Karush-Kuhn-Tucker (KKT) condition to deal with this problem

http://cs229.stanford.edu/notes/cs229-notes3.pdf


Constrained optimization

Minimize 
1

2
𝜃𝜃𝑇

Subject to 𝑦𝑖 𝑥𝑖𝜃 + 𝑏 ≥ 1 for 𝑖 = 1,2, … ,𝑁

𝜃 ∈ ℝ𝑑 , 𝑏 ∈ ℝ

Using Lagrange method: But wait, there is an inequality in our constraints

We use Karush-Kuhn-Tucker (KKT) condition to deal with this problem

𝑔 𝑥 = 𝑦𝑖 𝑥𝑖𝜃 + 𝑏 − 1

⇒ ቊ
𝑔 𝑥 > 0, 𝛼 = 0

𝛼 > 0, 𝑔 𝑥 = 0

𝛼 = 𝑙𝑎𝑔𝑟𝑎𝑛𝑔𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟

𝑔 𝑥 ≥ 0 Primal feasibility

𝛼 ≥ 0 Dual feasibility

𝑔 𝑥 𝛼 = 0 Complementary slackness

1)

2)

3)

We need to optimize

𝜃, 𝑏, 𝑎𝑛𝑑 𝛼

http://cs229.stanford.edu/notes/cs229-notes3.pdf


𝑔(𝑥) = 0

𝑥𝜃 + 𝑏 = 0

Class 2

Class 1

𝑔 𝑥 > 0

⇒ ቊ
𝑔 𝑥 > 0, 𝛼 = 0

𝛼 > 0, 𝑔 𝑥 = 0
𝑔 𝑥 𝛼 = 0 Complementary slackness3)

𝑔 𝑥 = 𝑦𝑖 𝑥𝑖𝜃 + 𝑏 − 1

𝑔 𝑥 > 0

𝑔(𝑥) = 0



Lagrange formulation

Minimize 
1

2
𝜃𝜃𝑇 s.t. 𝑦𝑖 𝑥𝑖𝜃 + 𝑏 − 1 ≥ 0

ℒ 𝜃, 𝑏, 𝛼 =
1

2
𝜃𝜃𝑇 −

𝑖=1

𝑁

𝛼𝑖(𝑦𝑖 𝑥𝑖𝜃 + 𝑏 − 1)

Minimize w.r.t 𝜃 and 𝑏 and maximize   w.r.t each 𝛼𝑖 ≥ 0

𝛻𝜃 ℒ 𝜃, 𝑏, 𝛼 = 𝜃 −

𝑖=1

𝑁

𝛼𝑖𝑦𝑖𝑥𝑖 = 0

𝛻𝑏 ℒ 𝜃, 𝑏, 𝛼 = −

𝑖=1

𝑁

𝛼𝑖𝑦𝑖 = 0



𝜃 =

𝑖=1

𝑁

𝛼𝑖𝑦𝑖𝑥𝑖 

𝑖=1

𝑁

𝛼𝑖𝑦𝑖 = 0

ℒ 𝜃, 𝑏, 𝛼 =
1

2
𝜃𝜃𝑇 −

𝑖=1

𝑁

𝛼𝑖(𝑦𝑖 𝑥𝑖𝜃 + 𝑏 − 1)

Let’s substitute these in the Lagrangian: 

ℒ 𝜃, 𝑏, 𝛼 =

𝑖=1

𝑁

𝛼𝑖 +
1

2
𝜃𝜃𝑇 −

𝑖=1

𝑁

𝛼𝑖(𝑦𝑖 𝑥𝑖𝜃 + 𝑏 )

ℒ 𝜃, 𝑏, 𝛼 =

𝑖=1

𝑁

𝛼𝑖 +
1

2
𝜃𝜃𝑇 −

𝑖=1

𝑁

𝛼𝑖 𝑦𝑖 𝑥𝑖𝜃 =

𝑖=1

𝑁

𝛼𝑖 +
1

2
𝜃𝜃𝑇 − 𝜃𝜃𝑇 =

=

𝑖=1

𝑁

𝛼𝑖 −
1

2
𝜃𝜃𝑇



ℒ 𝜃, 𝑏, 𝛼 =

𝑖=1

𝑁

𝛼𝑖 −
1

2
𝜃𝜃𝑇

𝜃 =

𝑖=1

𝑁

𝛼𝑖𝑦𝑖𝑥𝑖

ℒ 𝜃, 𝑏, 𝛼 =

𝑖=1

𝑁

𝛼𝑖 −
1

2


𝑖=1

𝑁



𝑗=1

𝑁

𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗𝑥𝑖𝑥𝑗
𝑇

maximize   w.r.t each 𝛼𝑖 ≥ 0 for 𝑖 = 1, … , 𝑁

and



𝑖=1

𝑁

𝛼𝑖𝑦𝑖 = 0



𝑖=1

𝑁

𝛼𝑖𝑦𝑖 = 0



The solution – quadratic programming

max
𝛼



𝑖=1

𝑁

𝛼𝑖 −
1

2


𝑖=1

𝑁



𝑗=1

𝑁

𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗𝑥𝑖𝑥𝑗
𝑇

Quadratic programming packages usually use “min”

min
𝛼

1

2


𝑖=1

𝑁



𝑗=1

𝑁

𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗𝑥𝑖𝑥𝑗
𝑇 −

𝑖=1

𝑁

𝛼𝑖

min
𝛼

1

2
𝛼𝑇

𝑦1𝑦1𝑥1𝑥1
𝑇 𝑦1𝑦2𝑥1𝑥2

𝑇 … 𝑦1𝑦𝑁𝑥1𝑥𝑁
𝑇

𝑦2𝑦1𝑥2𝑥1
𝑇

…
𝑦𝑁𝑦1𝑥𝑁𝑥1

𝑇

𝑦2𝑦2𝑥2𝑥2
𝑇

…
𝑦𝑁𝑦2𝑥𝑁𝑥2

𝑇

…
…
…

𝑦2𝑦𝑁𝑥2𝑥𝑁
𝑇

…
𝑦𝑁𝑦𝑁𝑥𝑁𝑥𝑁

𝑇

𝛼 + −𝐼𝑇 𝛼



min
𝛼

1

2
𝛼𝑇

𝑦1𝑦1𝑥1𝑥1
𝑇 𝑦1𝑦1𝑥1𝑥2

𝑇 … 𝑦1𝑦𝑁𝑥1𝑥𝑁
𝑇

𝑦2𝑦1𝑥2𝑥1
𝑇

…
𝑦𝑁𝑦1𝑥𝑁𝑥1

𝑇

𝑦2𝑦2𝑥2𝑥2
𝑇

…
𝑦𝑁𝑦2𝑥𝑛𝑥2

𝑇

…
…
…

𝑦2𝑦𝑁𝑥2𝑥𝑁
𝑇

…
𝑦𝑁𝑦𝑁𝑥𝑁𝑥𝑁

𝑇

𝛼 + −𝐼𝑇 𝛼

Quadratic coefficients

Linear term

Subject to 

𝑖=1

𝑁

𝛼𝑖𝑦𝑖 = 𝑦𝑇𝛼 = 0

Linear equality constraint

𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑(0) ≤ 𝛼 ≤ upper bound(∞)

Pass these to a 

quadratic programming 

package



min
𝛼

1

2
𝛼𝑇𝑄𝛼 − 1𝑇𝛼 subject to        𝑦𝑇𝛼 = 0; 𝛼 ≥ 0

Quadratic programming will give us 𝛼

Solution: 𝛼 = 𝛼1, … , 𝛼𝑁

KKT condition (𝛼𝑖𝑔𝑖 𝜃 = 0):

𝛼𝑖 > 0 ⇒ 𝑥𝑖 𝑖𝑠 𝑎 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟

𝑦𝑖 𝑥𝑖𝜃 + 𝑏 − 1 > 0 ⇒ 𝛼𝑖 = 0

𝛼𝑖 𝑦𝑖 𝑥𝑖𝜃 + 𝑏 − 1 = 0

𝑦𝑖 𝑥𝑖𝜃 + 𝑏 − 1 = 0 ⇒

𝑥𝑖𝜃+ 𝑏 = 1

𝑥𝜃+ 𝑏 = 0
𝑥𝑖𝜃 + 𝑏 = −1

Class 2

Class 1

𝛼2 = 0

𝛼4 = 0

𝛼5 = 0

𝛼3 = 0

𝛼6 > 0

𝛼1 > 0

𝛼8 > 0

𝛼11 = 0

𝛼7 = 0

𝛼10 = 0

𝛼9 = 0

2

𝜃 ∗ 𝜃



𝜃 =

𝑖=1

𝑁

𝛼𝑖𝑦𝑖𝑥𝑖

and for 𝑏 pick any support 

vector and calculate: 

𝑦𝑖 𝑥𝑖𝜃 + 𝑏 = 1

→ 𝜃 =𝛼𝑖𝑦𝑖𝑥𝑖

𝑥𝑖𝑖𝑛 𝑆𝑉

No need to go over all datapoints

Training



𝜃 =

𝑖=1

𝑁

𝛼𝑖𝑦𝑖𝑥𝑖

and for 𝑏 pick any support 

vector and calculate: 

𝑦𝑖 𝑥𝑖𝜃 + 𝑏 = 1

→ 𝜃 =𝛼𝑖𝑦𝑖𝑥𝑖

𝑥𝑖𝑖𝑛 𝑆𝑉

No need to go over all datapoints

Training Testing

For a new test point s

Compute:

s𝜃 + b =𝛼𝑖𝑦𝑖𝑥𝑖𝑠
𝑇 + 𝑏

𝑥𝑖𝑖𝑛 𝑆𝑉

Classify s as class 1 if the result is 

positive, and class 2 otherwise 
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Geometric Interpretation

2
=

2

𝑤 ∗ 𝑤

𝑥𝑖𝜃+ 𝑏 = 1

𝑥𝜃+ 𝑏 = 0

𝑥𝑖𝜃+ 𝑏 = −1

2

||𝜃||
=

2

𝜃 ∗ 𝜃

𝜃



Regularization lecture

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝐸 𝜃 =
1

𝑛


𝑖=1

𝑛

𝑦𝑖 − 𝑧𝑖𝜃
2

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
1

𝑁
z𝜃 − 𝑦 𝑇 z𝜃 − 𝑦

Subject to  𝜃𝑡𝜃 ≤ 𝐶

For simplicity let’s call 𝜃𝑙𝑖𝑛 as weights’ solution for non constrained one 

and 𝜃 for the constrained model.



Constrained optimization

Minimize 
1

2
𝜃𝜃𝑇

Subject to 𝑦𝑖 𝑥𝑖𝜃 + 𝑏 ≥ 1 for 𝑖 = 1,2, … ,𝑁

𝜃 ∈ ℝ𝑑 , 𝑏 ∈ ℝ

Using Lagrange method: But wait, there is an inequality in our constraints

We use Karush-Kuhn-Tucker (KKT) condition to deal with this problem

http://cs229.stanford.edu/notes/cs229-notes3.pdf


Regularization vs SVMs

• Regularization:

• SVM:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
1

𝑁
z𝜃 − 𝑦 𝑇 z𝜃 − 𝑦

Subject to  𝜃𝑡𝜃 ≤ 𝐶

Minimize 
1

2
𝜃𝜃𝑇

Subject to 𝑦𝑖 𝑥𝑖𝜃 + 𝑏 ≥ 1 for 𝑖 = 1,2, … ,𝑁



𝑋1 𝑍1 = (𝑋1 − 20)^2

𝑋2

(𝑋1
2, 𝑋2

2)

𝑍
2
=
(𝑋

2
−
2
0
)^
2

𝑋 𝑍

From 𝑥 to 𝑧 space



In 𝑥 space

max
𝛼



𝑖=1

𝑁

𝛼𝑖 −
1

2


𝑖=1

𝑁



𝑗=1

𝑁

𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗𝑥𝑖𝑥𝑗
𝑇

𝑋1

𝑋2

𝑙𝑒𝑡′𝑠 𝑠𝑎𝑦 𝑥 𝑖𝑠 𝑛 × 𝑑
𝑥xT will be n × 𝑛

If I add millions of 

dimensions to 𝑥, would 

it affect the final size of 

𝑥xT?



In 𝑧 space

max
𝛼



𝑖=1

𝑁

𝛼𝑖 −
1

2


𝑖=1

𝑁



𝑗=1

𝑁

𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗𝑧𝑖𝑧𝑗
𝑇

𝑍1

𝑍2



𝑋1

𝑋2

In 𝑥 space, they are called pre-images of support vectors

Ε 𝐸𝑜𝑢𝑡 ≤
Ε[# 𝑆𝑉]

𝑁 − 1

Out of sample error:



Take-Home Messages

• Linear Separability

• Perceptron

• SVM: Geometric Intuition and Formulation

42


