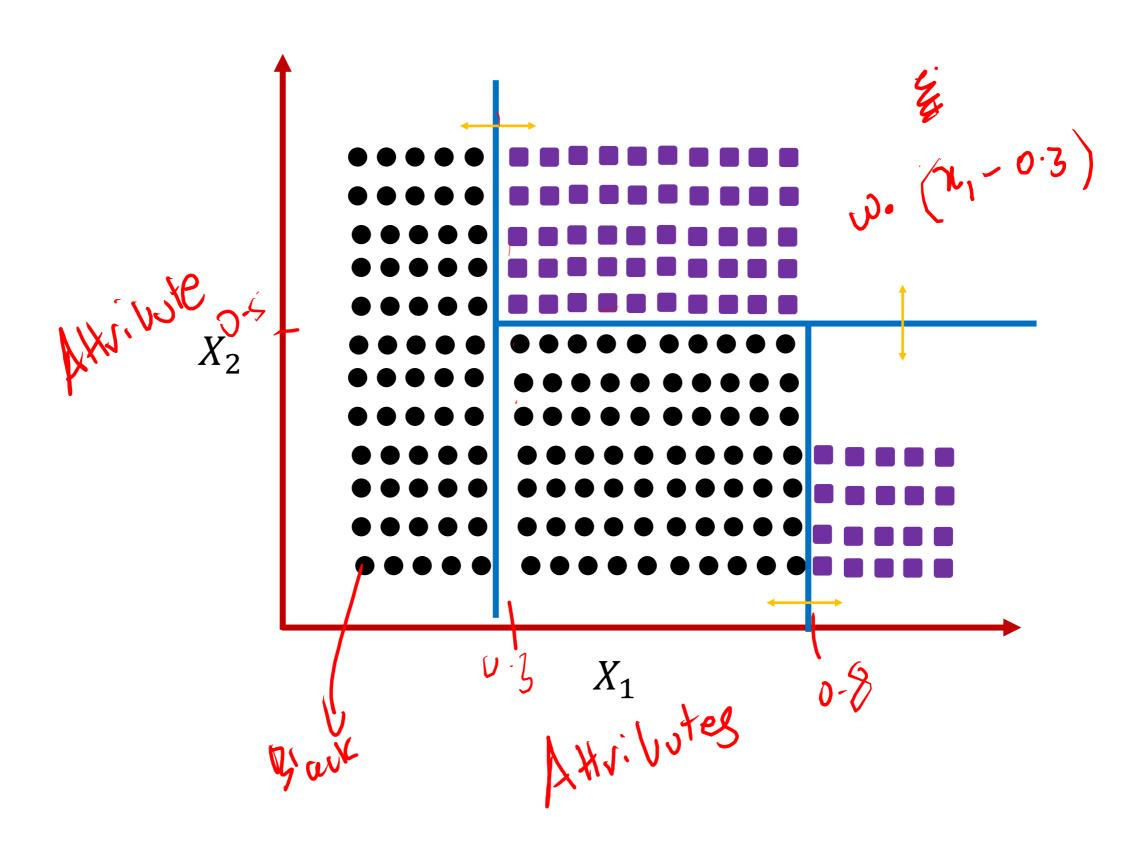
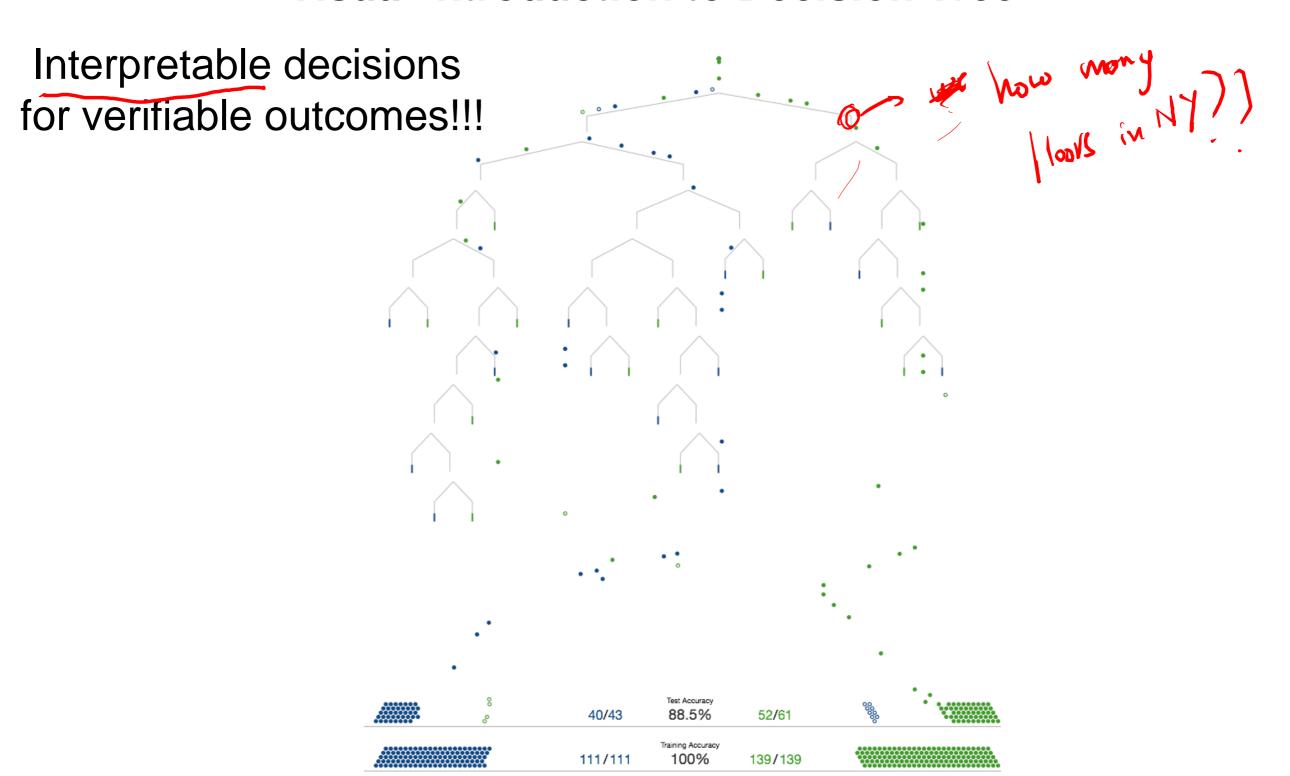


Decision Tree

Nakul Gopalan Georgia Tech Data



Visual Introduction to Decision Tree



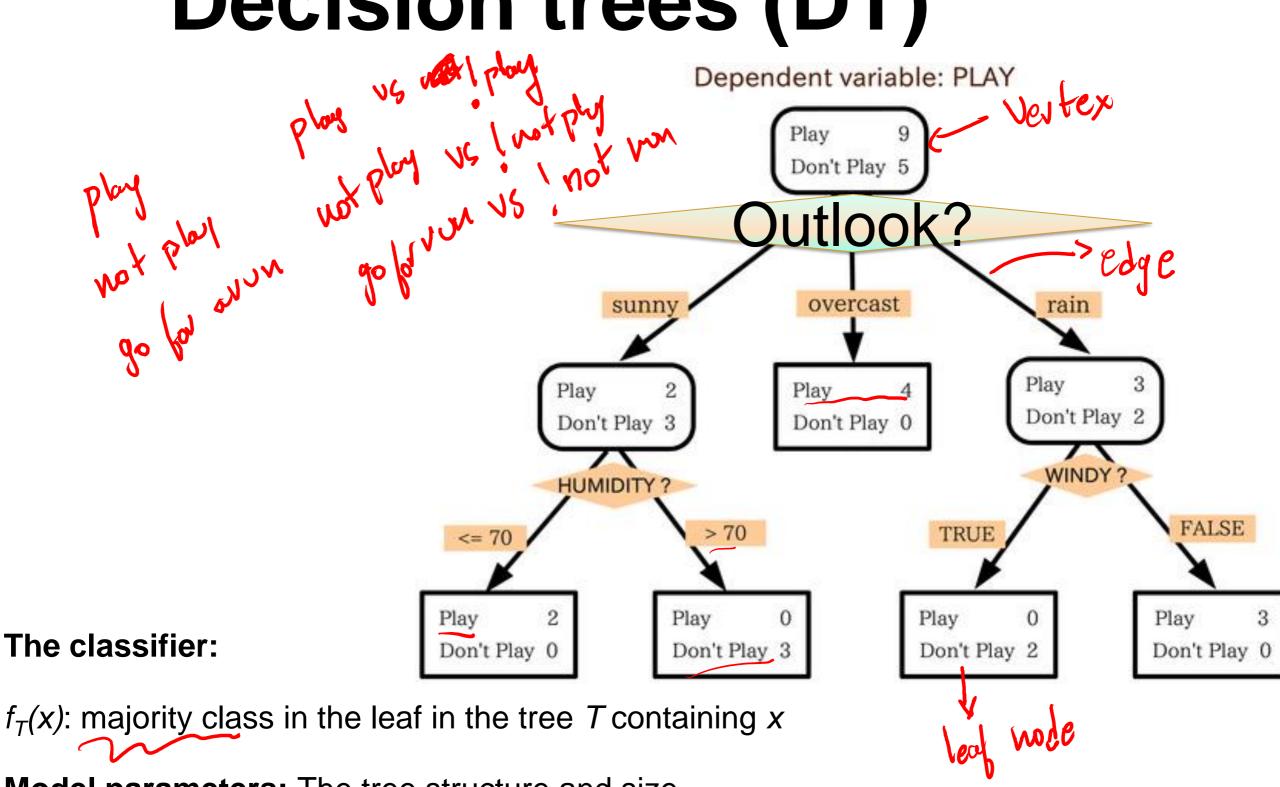
Building a tree to distinguish homes in New York from homes in San Francisco

Decision Tree: Example (2)

						Outlook:	S unny,
	0	Т	Н	W	Play?	<u>o</u> utiook.	_
1	S	Н	Н	W	-		Overcast,
2	S	Н	Н	S	-		R ainy
3	0	Н	H	W	+	_	
4	R	M	Н	W	+	<u>T</u> emperature:	<u>H</u> ot,
5	R	С	N	W	+		<u>M</u> edium,
6	R	С	N	S	-		C ool
7	0	С	N	S	+		_
8	S	M	Н	W	-	<u>H</u> umidity:	<u>H</u> igh,
9	S	С	N	W	+		Normal,
10	R	M	N	W	+		Low
11	S	M	Ν	S	+		_
12	0	M	Н	S	+	<u>W</u> ind:	S trong,
13	0	Н	N	W			Weak
14	R	M	Н	S	-		

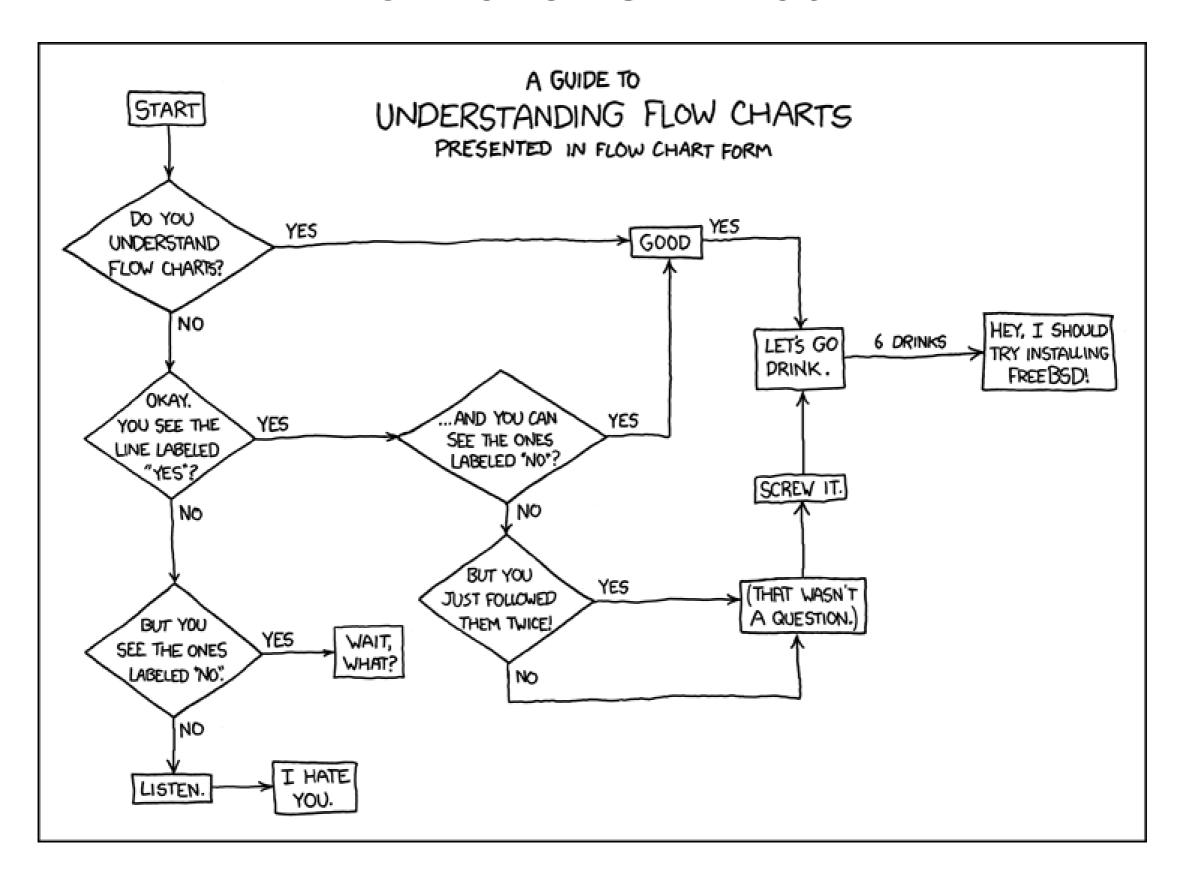
Will I play tennis today?

Decision trees (DT)



Model parameters: The tree structure and size

Flow charts - xkcd

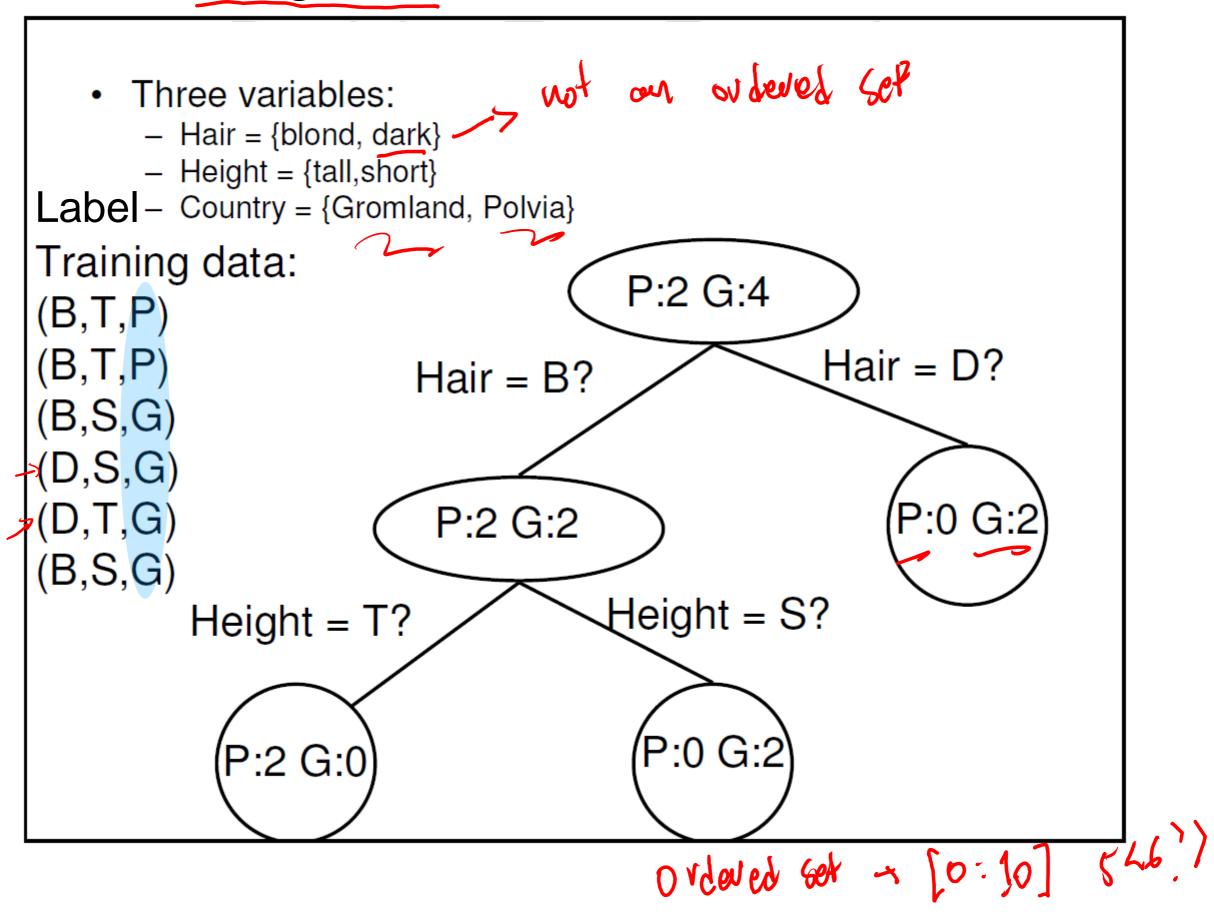


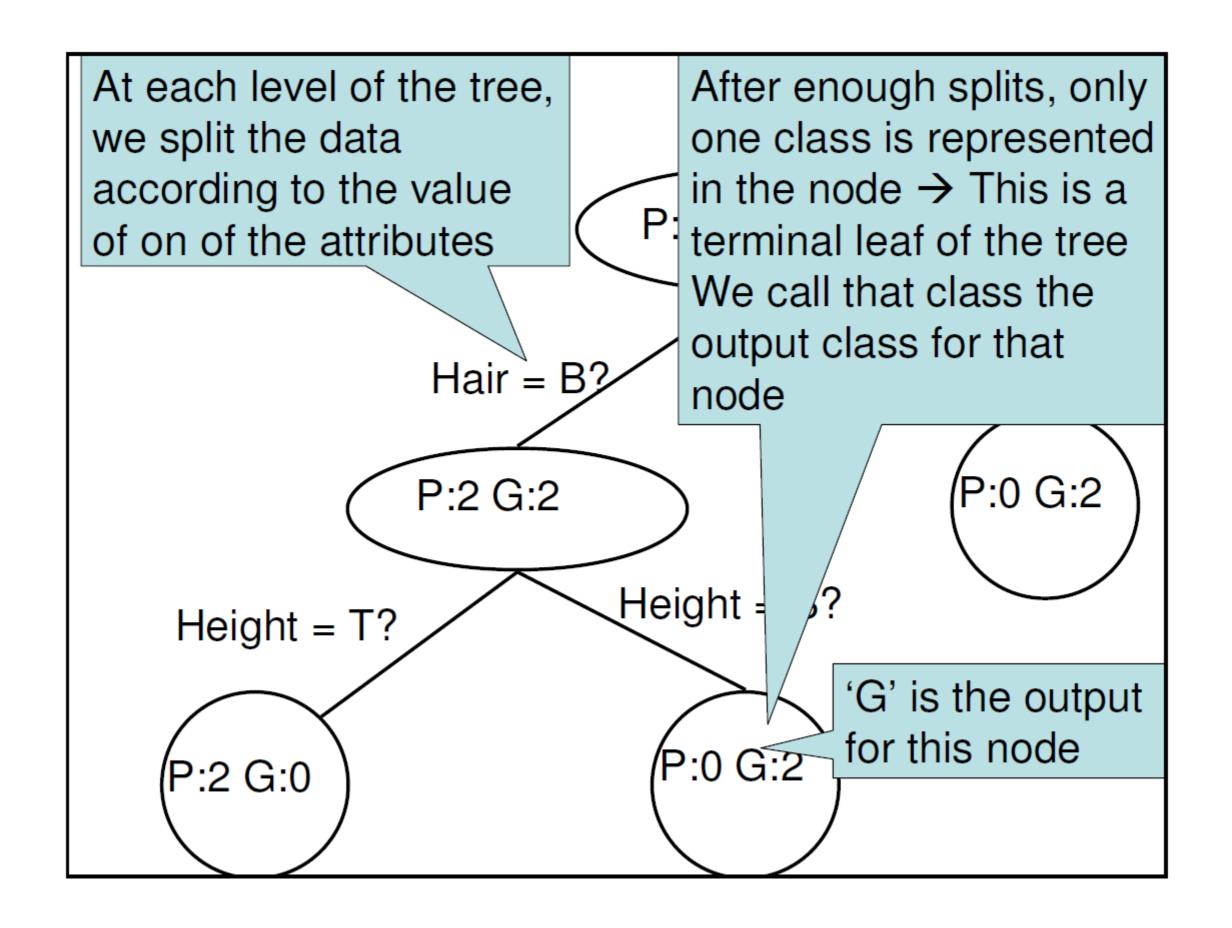
Decision trees

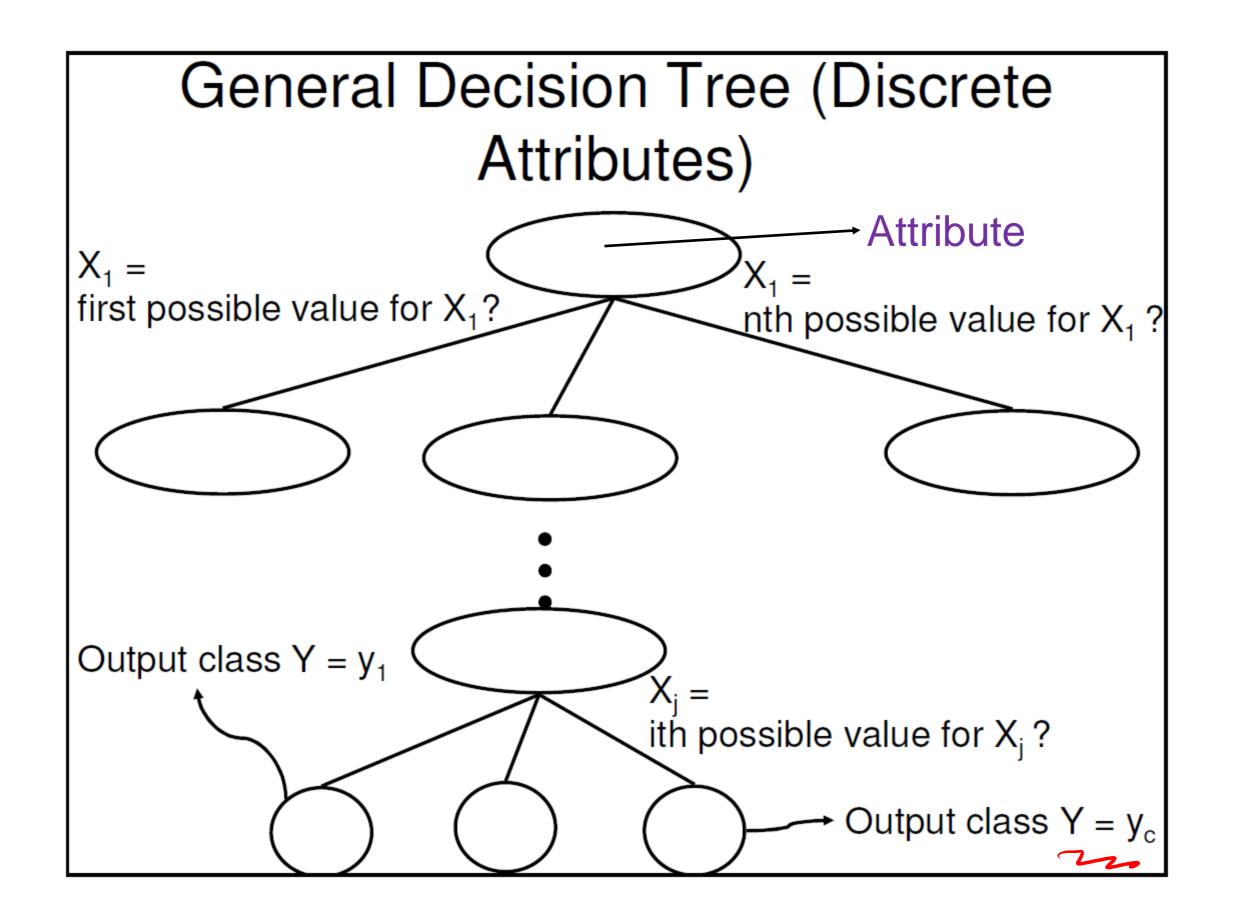
Pieces:

- 1. Find the best attribute to split on
- 2. Find the best split on the chosen attribute
- 3. Decide on when to stop splitting

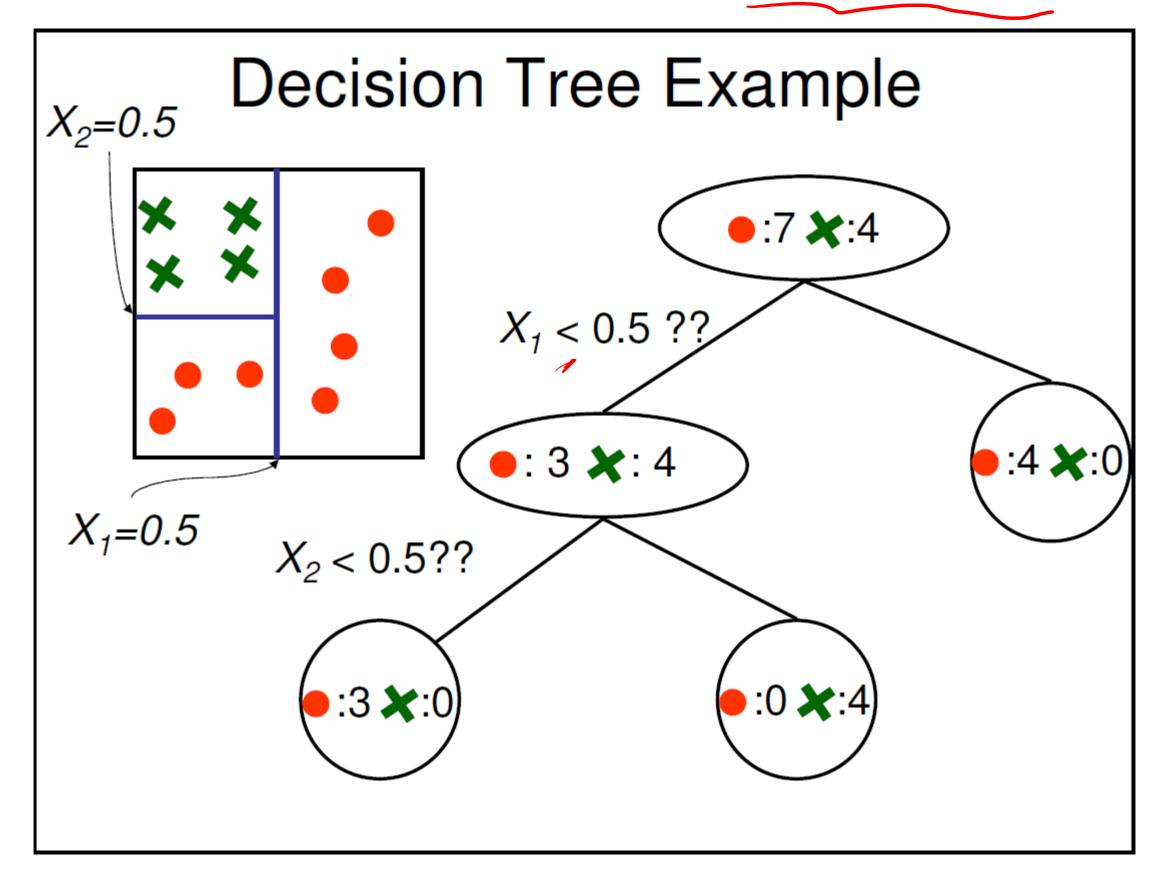
Categorical or Discrete attributes



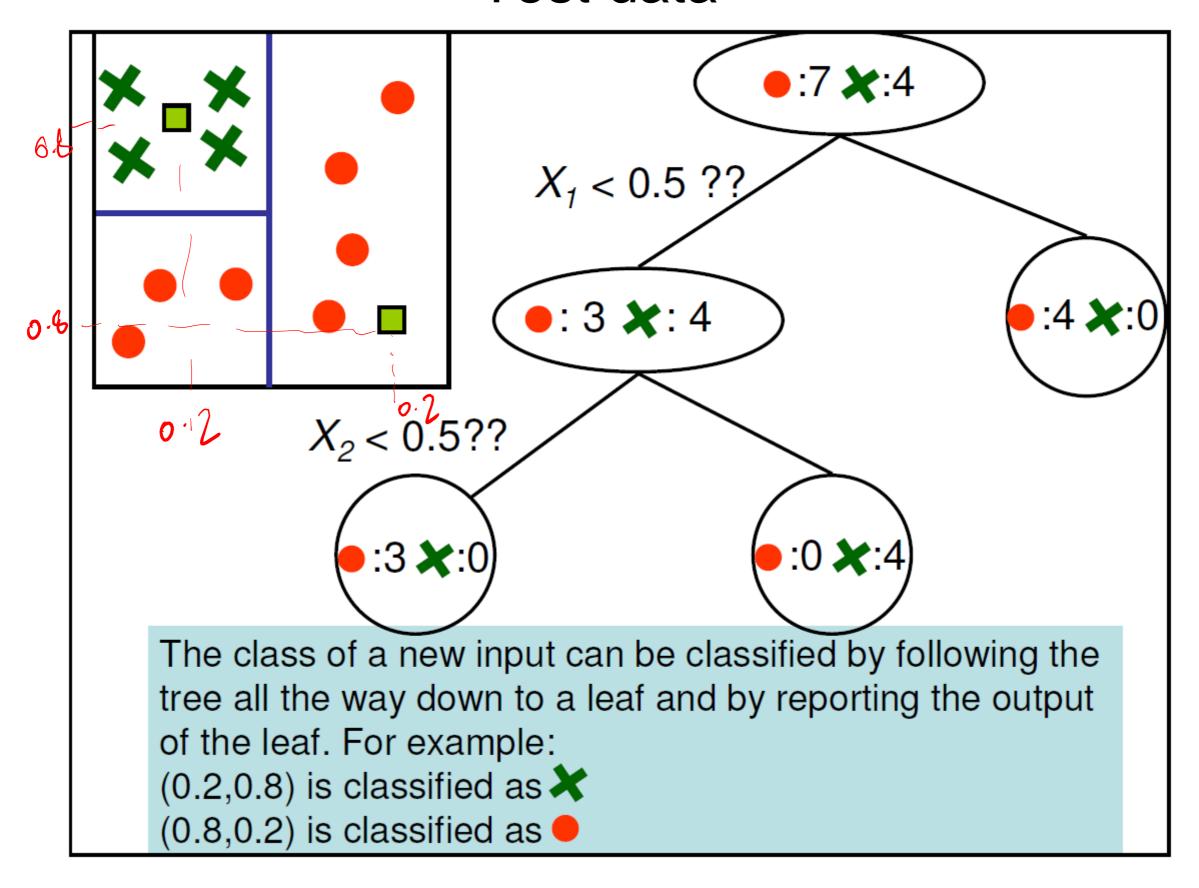




Continuous attributes or ordered attributes



Test data

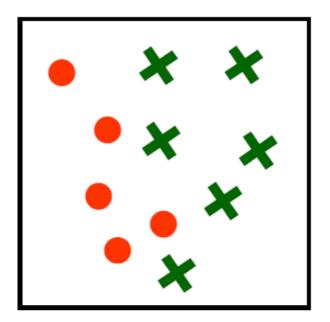


General Decision Tree (Continuous Attributes) $X_1 < t_1$? Output class $Y = y_1$ $X_i < t_i$? Output class Y = y_c

Basic Questions

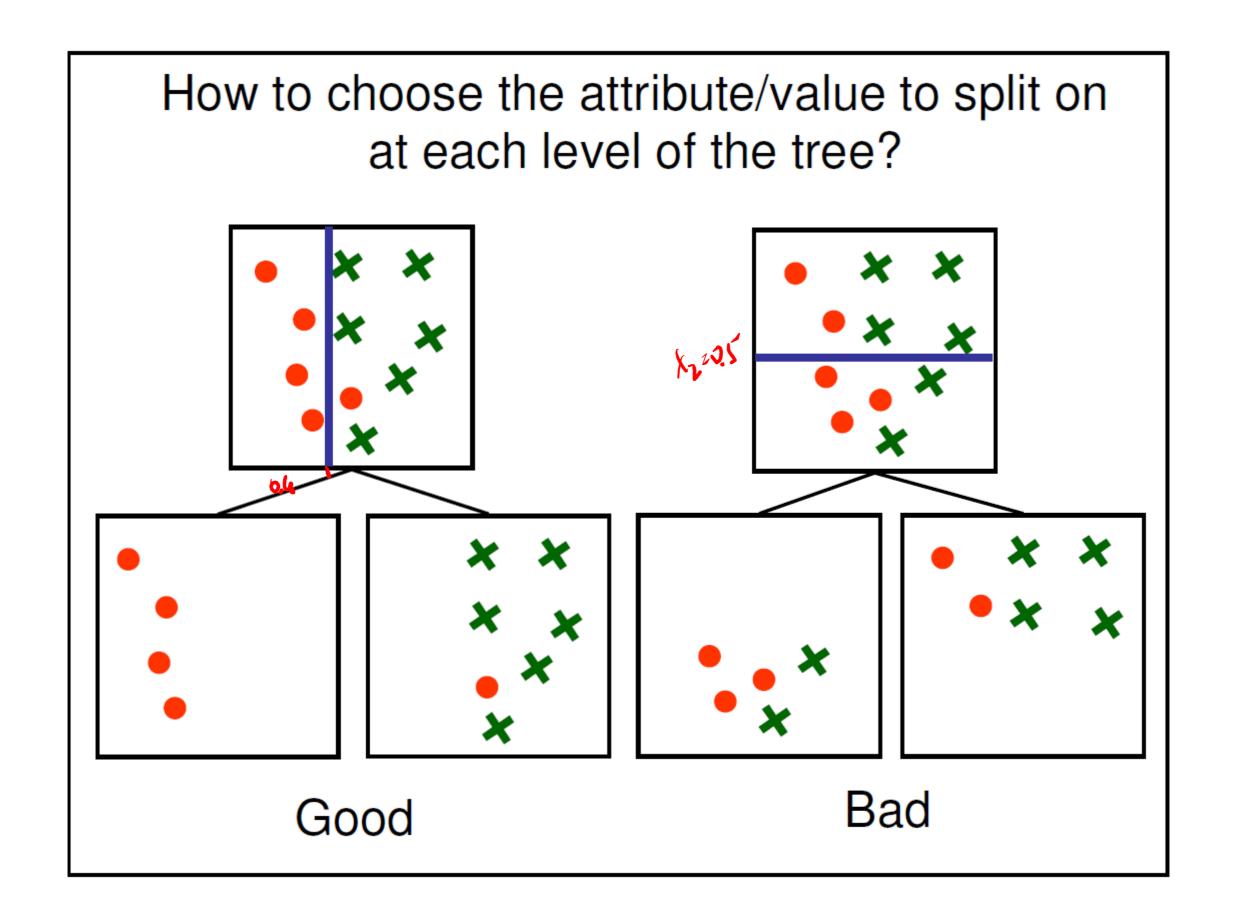
- How to choose the attribute/value to split on at each level of the tree?
- When to stop splitting? When should a node be declared a leaf?
- If a leaf node is impure, how should the class label be assigned?
- If the tree is too large, how can it be pruned?

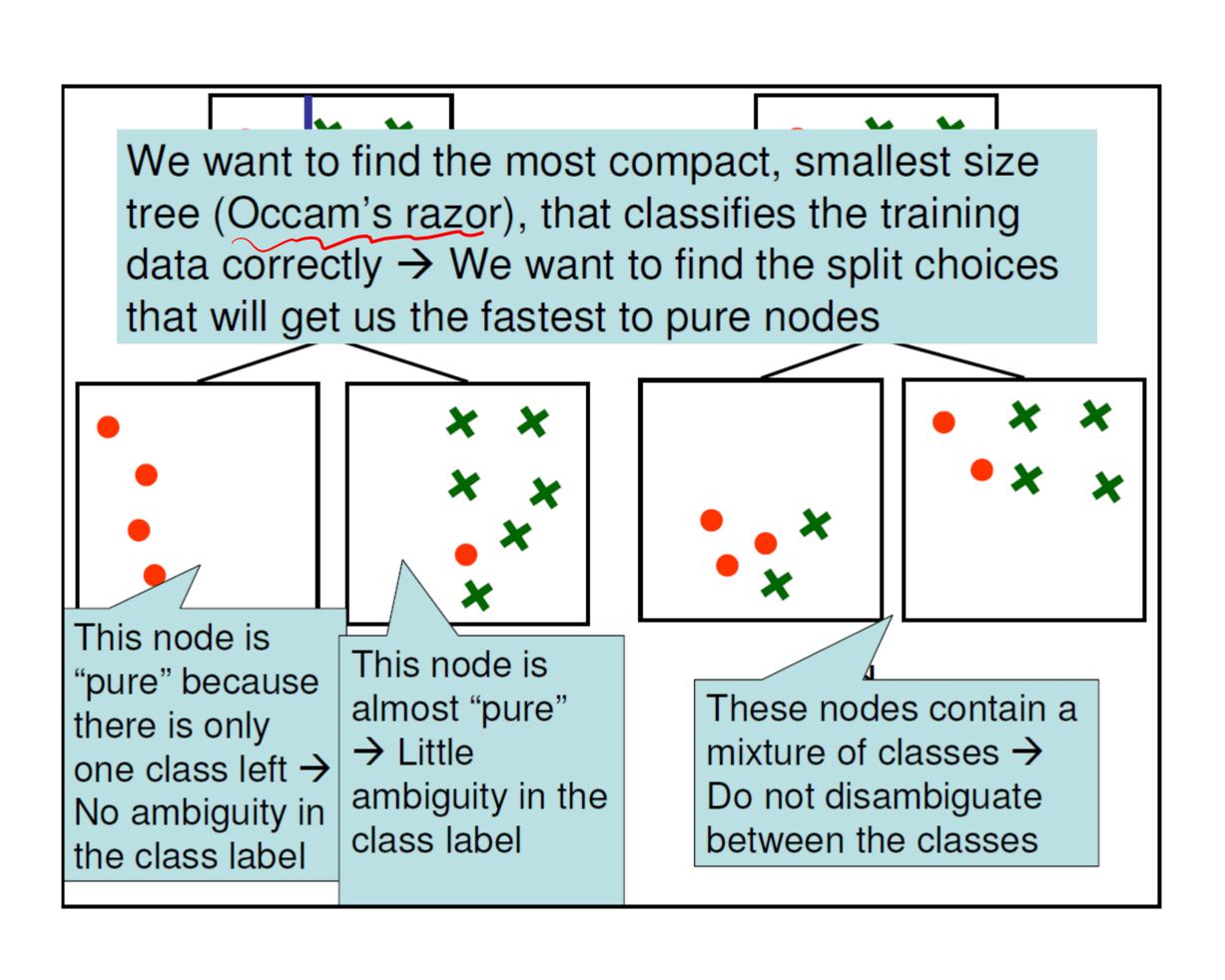
How to choose the attribute/value to split on at each level of the tree?



- Two classes (red circles/green crosses)
- Two attributes: X₁ and X₂
- 11 points in training data
- Idea

 Construct a decision tree such that the leaf nodes predict correctly the class for all the training examples





Information Content

Coin flip

C_{1H}	0
C_{1T}	6

$$P(C_{1H}) = 0/6 = 0$$

$$P(C_{1T}) = 6/6 = 1$$

C_{2H}	1
C_{2T}	5

$$P(C_{2H}) = 1/6$$

$$\mathsf{P}(\mathcal{C}_{2T})=5/6$$

C_{3H}	2
C_{3T}	4

$$P(C_{3H}) = 2/6$$

$$P(C_{3T}) = 4/6$$

Which coin will give us the purest information? Entropy ~ Uncertainty

Lower uncertainty, higher information gain

$$H(X) = -\sum_{i=1}^{N} P(x=i) \log_2 P(x=i)$$

$$5$$
 Entropy = $-\sqrt{0} \log 0 - 1 \log 1 = -0 - 0 = 0$

Entropy₂ =
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (5/6) = 0.65$$

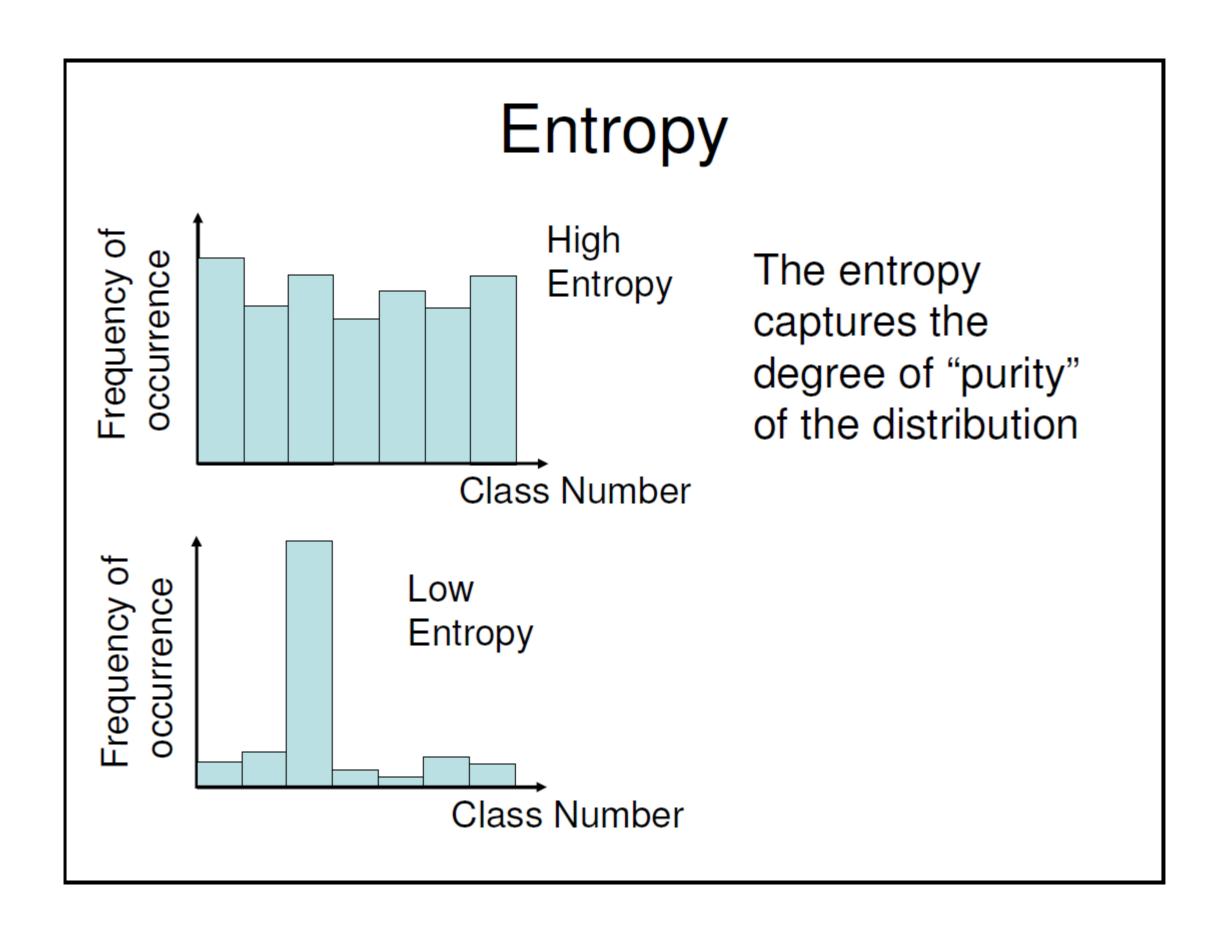
Entropy₃ =
$$-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$$

Entropy

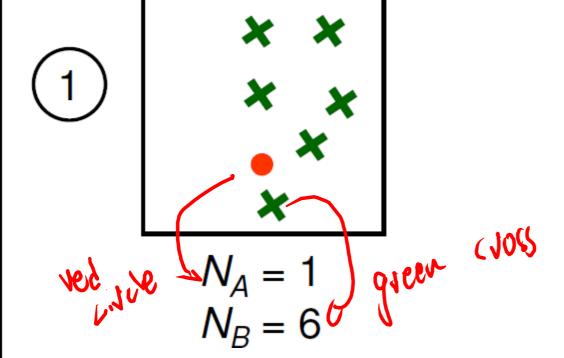
 In general, the average number of bits necessary to encode n values is the entropy:

$$\boldsymbol{H} = -\sum_{i=1}^{n} \boldsymbol{P}_{i} \log_{2} \boldsymbol{P}_{i}$$

- P_i = probability of occurrence of value i
 - High entropy -> All the classes are (nearly) equally likely
 - Low entropy -> A few classes are likely; most of the classes are rarely observed

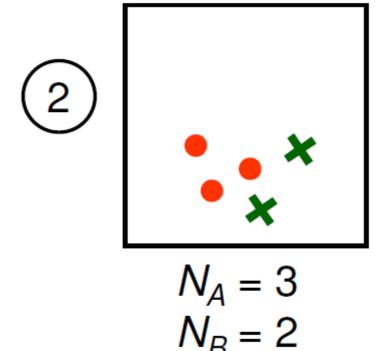


Example Entropy Calculation



$$p_A = N_A/(N_A + N_B) = 1/7$$

 $p_B = N_B/(N_A + N_B) = 6/7$



$$p_A = N_A/(N_A + N_B) = 3/5$$

 $p_B = N_B/(N_A + N_B) = 2/5$

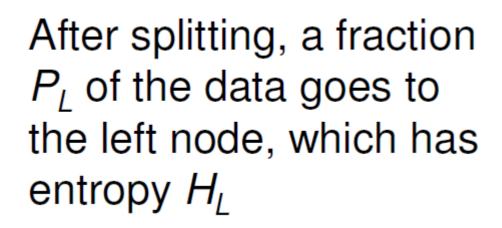
$$H_1 = -p_A \log_2 p_A - p_B \log_2 p_B$$
 $H_2 = -p_A \log_2 p_A - p_B \log_2 p_B$
= 0.59 = 0.97

$$H_1 < H_2 => (2)$$
 less pure than (1)

Survey of many

Conditional Entropy

Entropy before splitting: H



After splitting, a fraction P_R of the data goes to the left node, which has entropy H_R

The average entropy after splitting is:

Entropy of left node

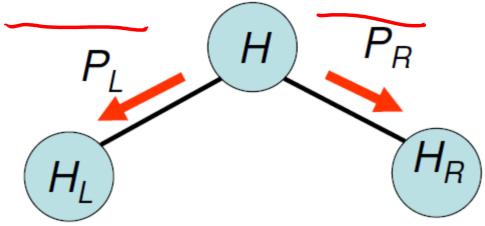
$$H_L \times P_L + H_R \times P_R$$

IP: H:

"Conditional Entropy"

Probability that a random input is directed to the left node

Information Gain



We want nodes as pure as possible

- →We want to reduce the entropy as much as possible
- → We want to maximize the difference between the entropy of the parent node and the expected entropy of the children
 Information Gain (IG) = Amount by

which the ambiguity is decreased

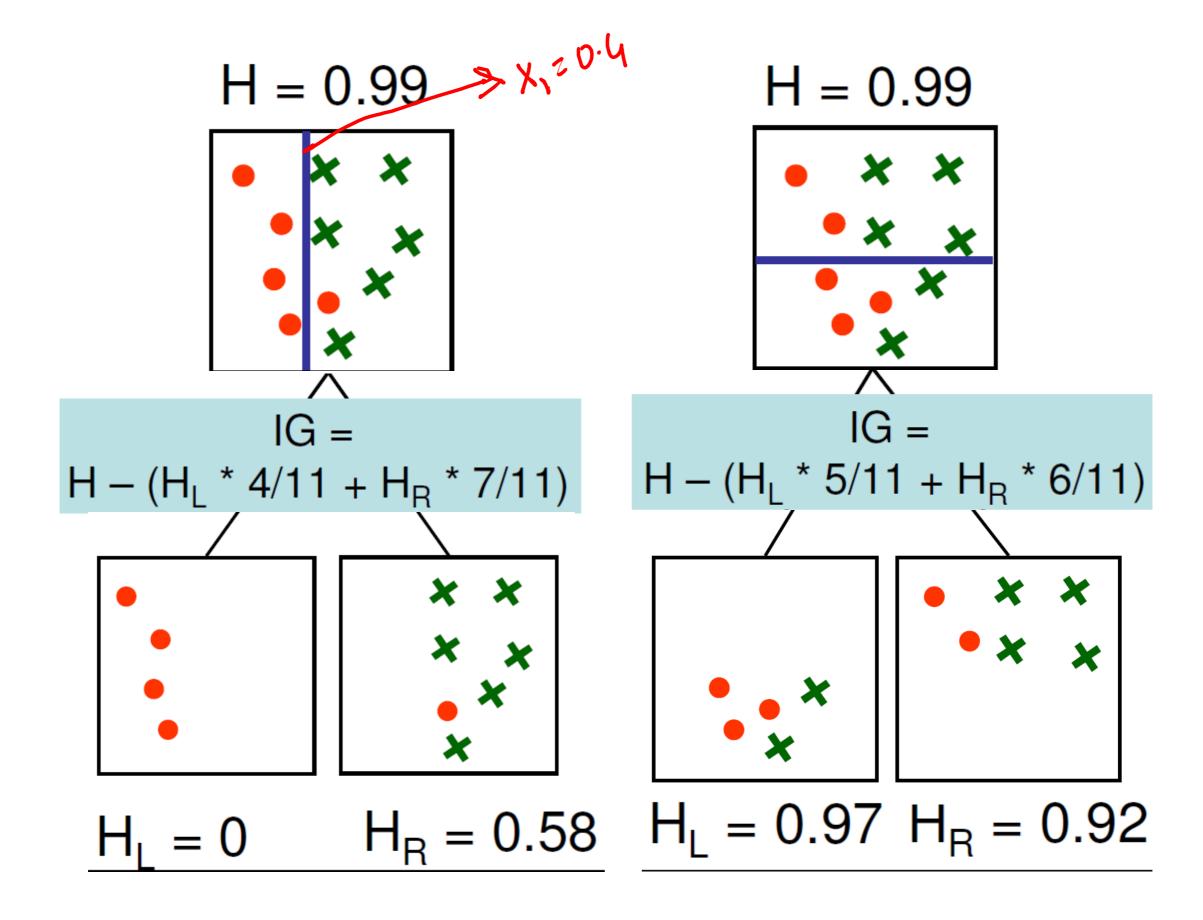
by splitting the node

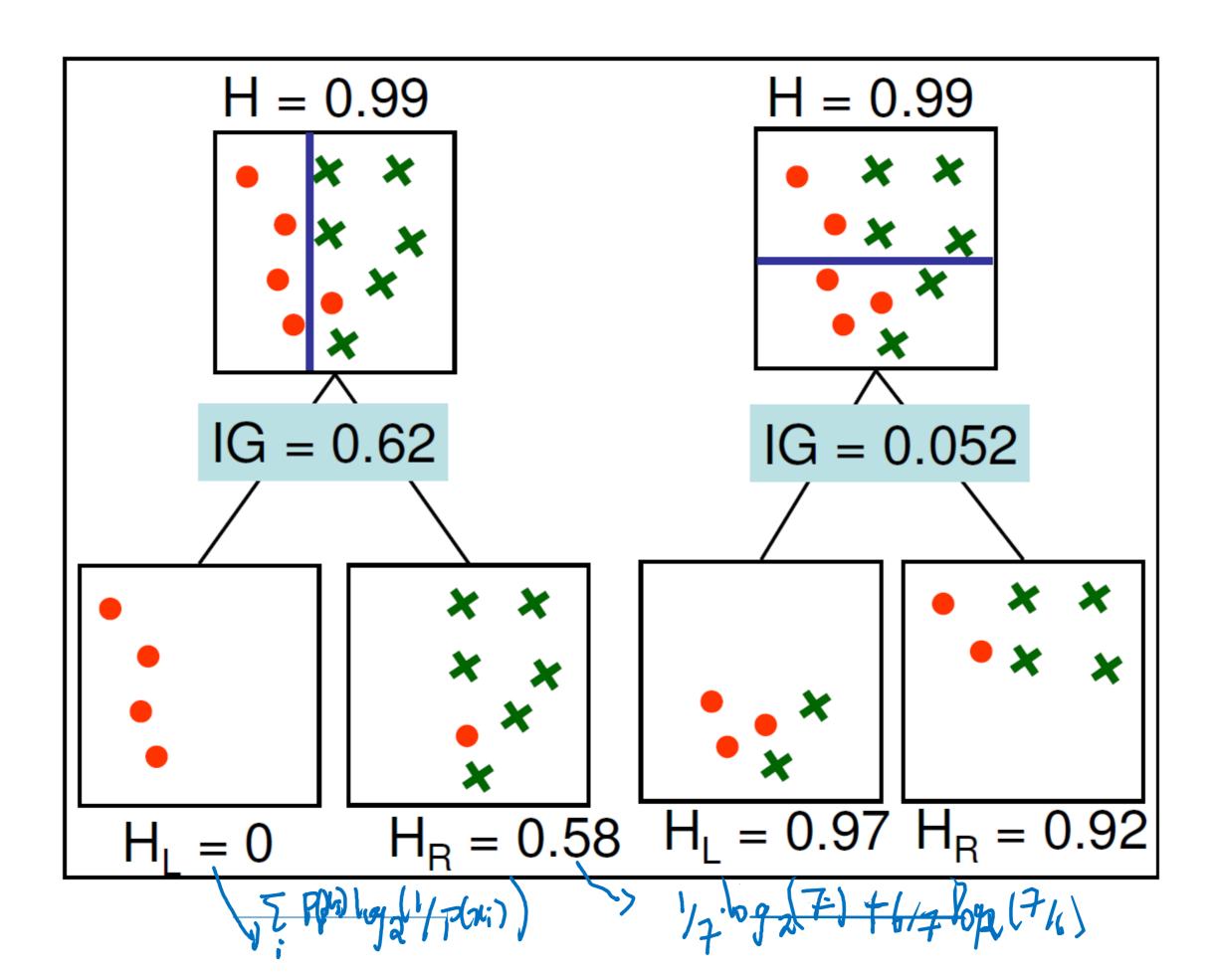
Maximize:

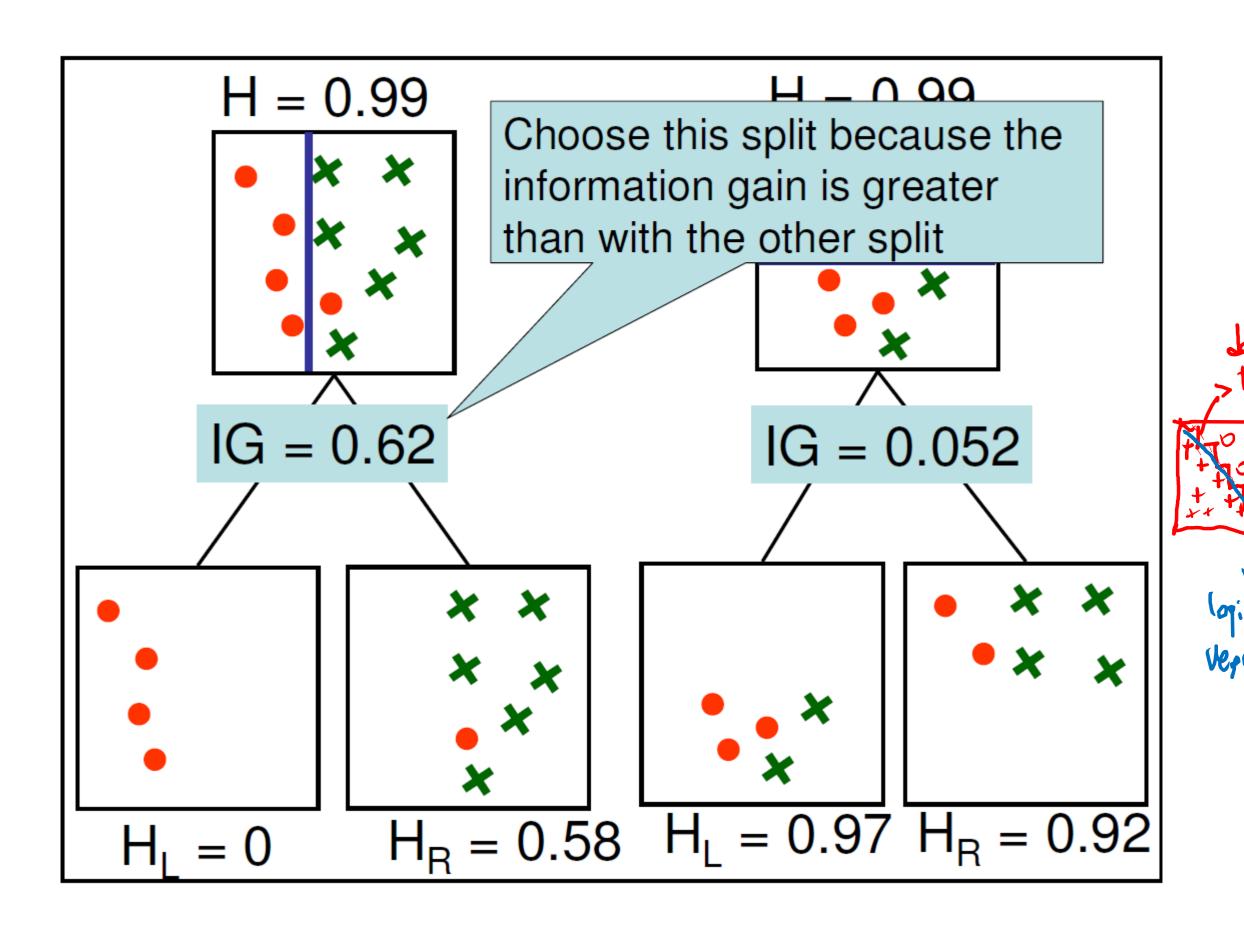
$$IG = H - (H_L \times P_L + H_R \times P_R)$$

Notations

- Entropy: H(Y) = Entropy of the distribution of classes at a node
- Conditional Entropy:
 - Discrete: $H(Y|X_j)$ = Entropy after splitting with respect to variable j
 - Continuous: $H(Y|X_j,t)$ = Entropy after splitting with respect to variable j with threshold t
- Information gain:
 - Discrete: $IG(Y|X_j) = H(Y) H(Y|X_j) = Entropy$ after splitting with respect to variable j
 - Continuous: $IG(Y|X_j,t) = H(Y) H(Y|X_j,t) =$ Entropy after splitting with respect to variable j with threshold t





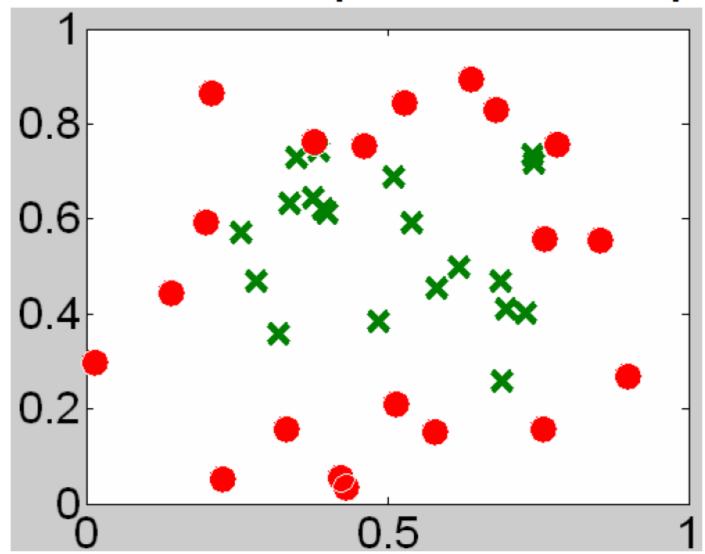


Announcements

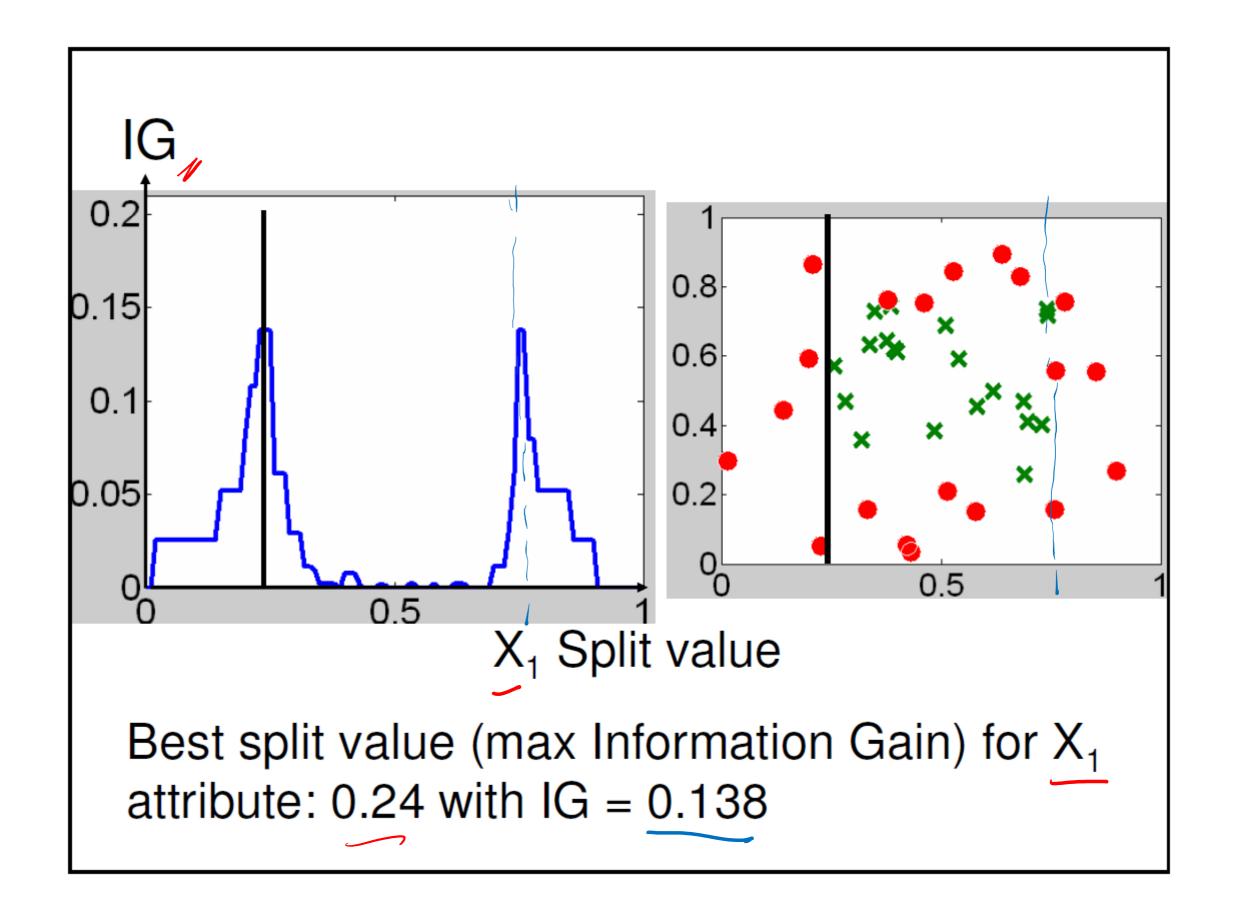
- Touchpoint deliverables due today. Video + PPT
- Touchpoint next class. Individual BlueJeans calls with mentors.
- Please make sure to attend your touchpoints for feedback!!!
- Physical touchpoint survey needed back today
- Questions??

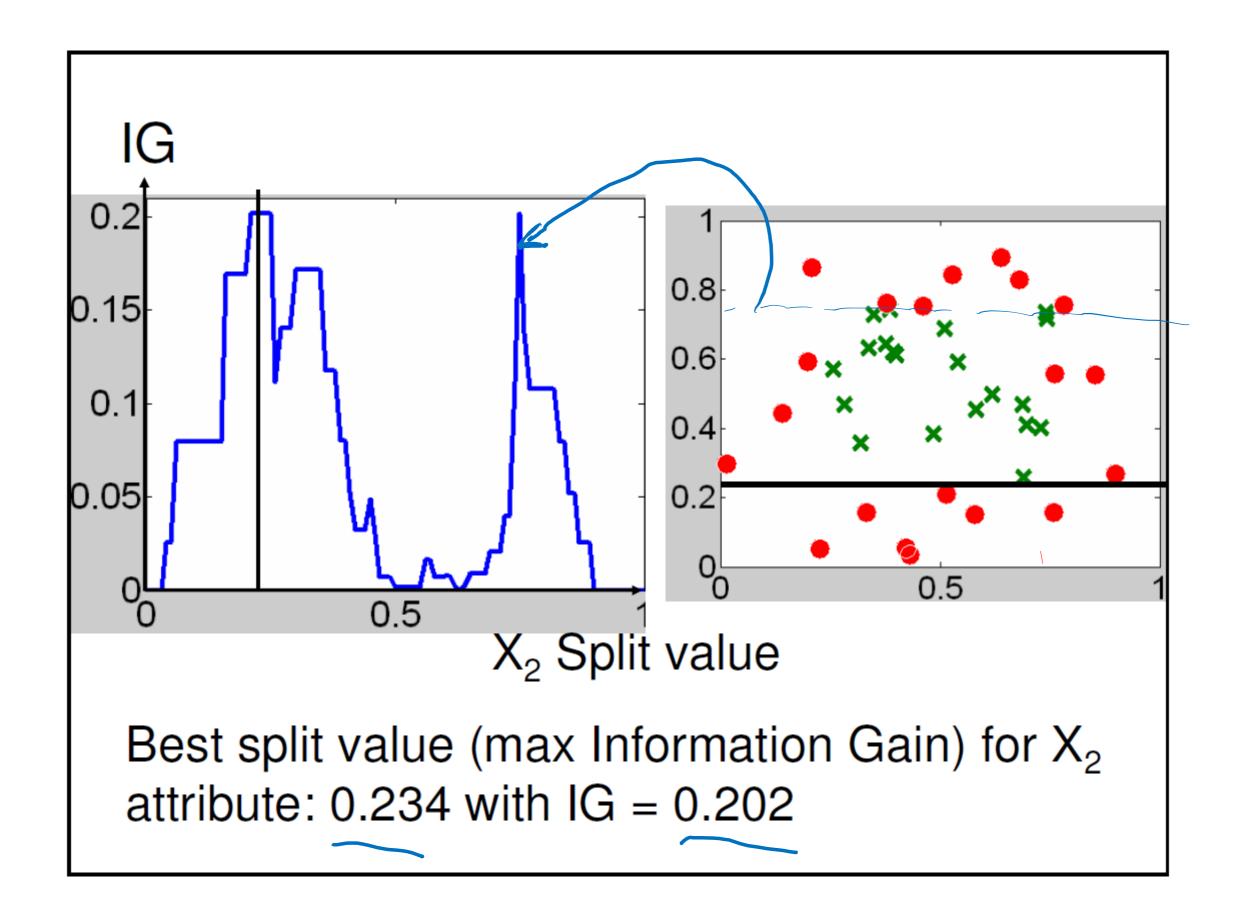
Iseel.) PCICION of attributes yes 4>10kg W ent dogs: H (X) = gain: 11xi)= ZP(xi). H(Y)

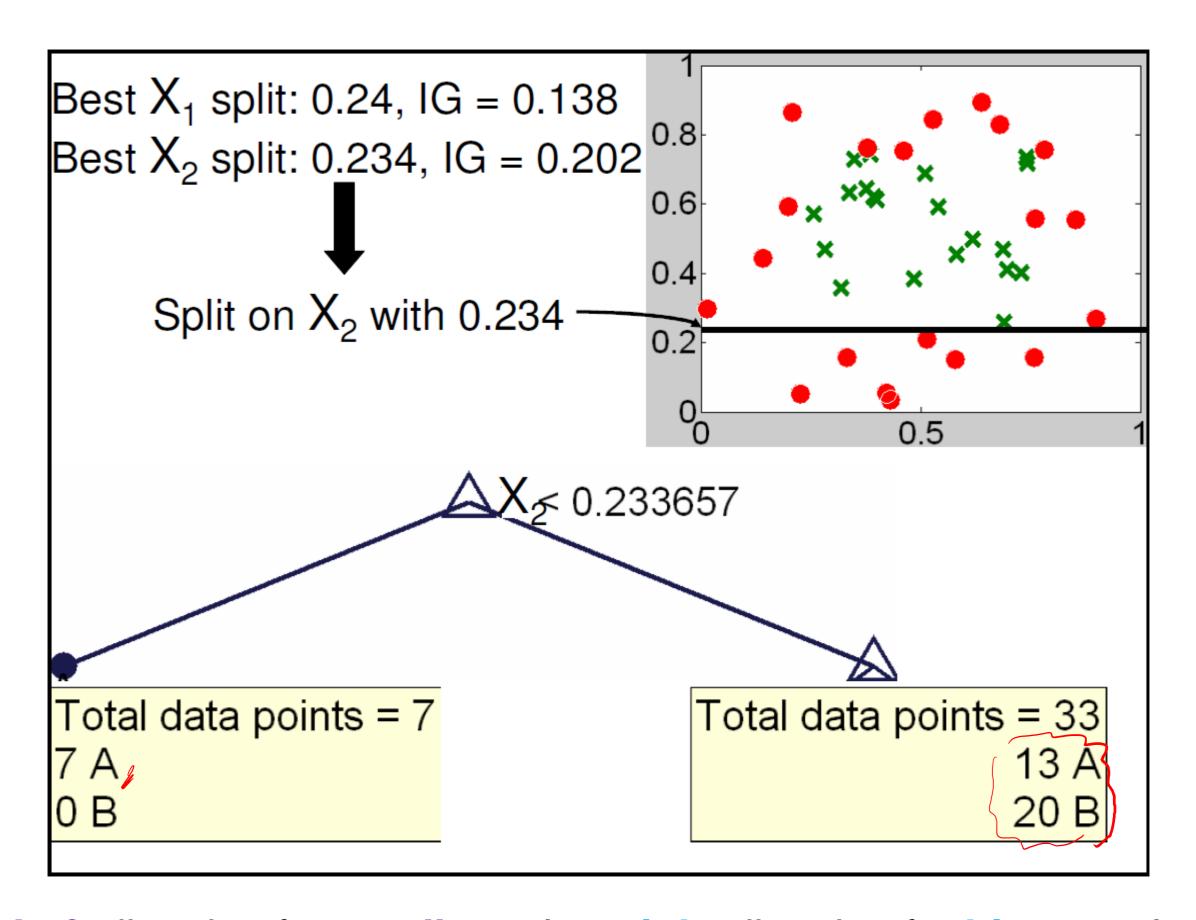
More Complete Example



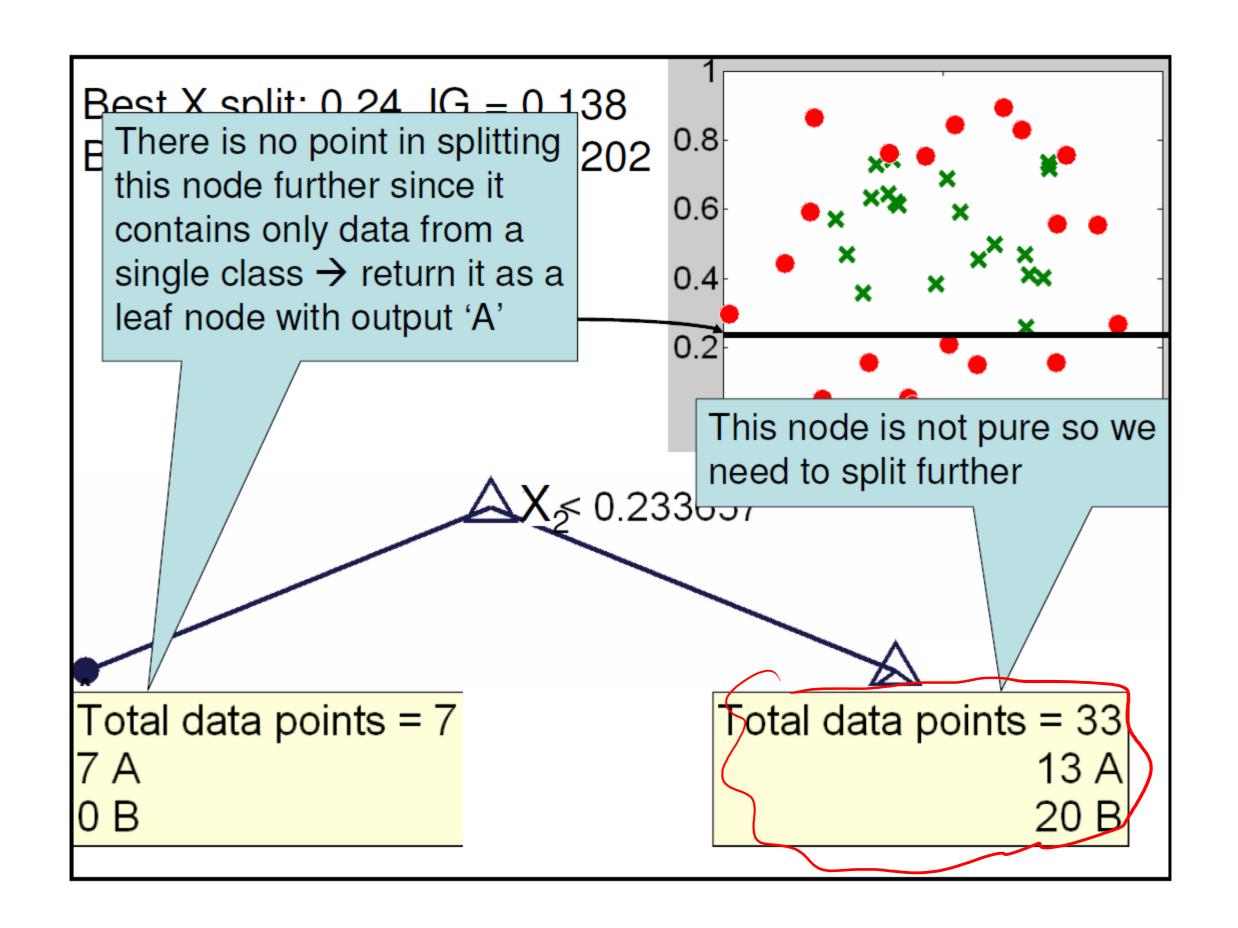
- = 20 training examples from class A
- X = 20 training examples from class B Attributes = X₁ and X₂ coordinates

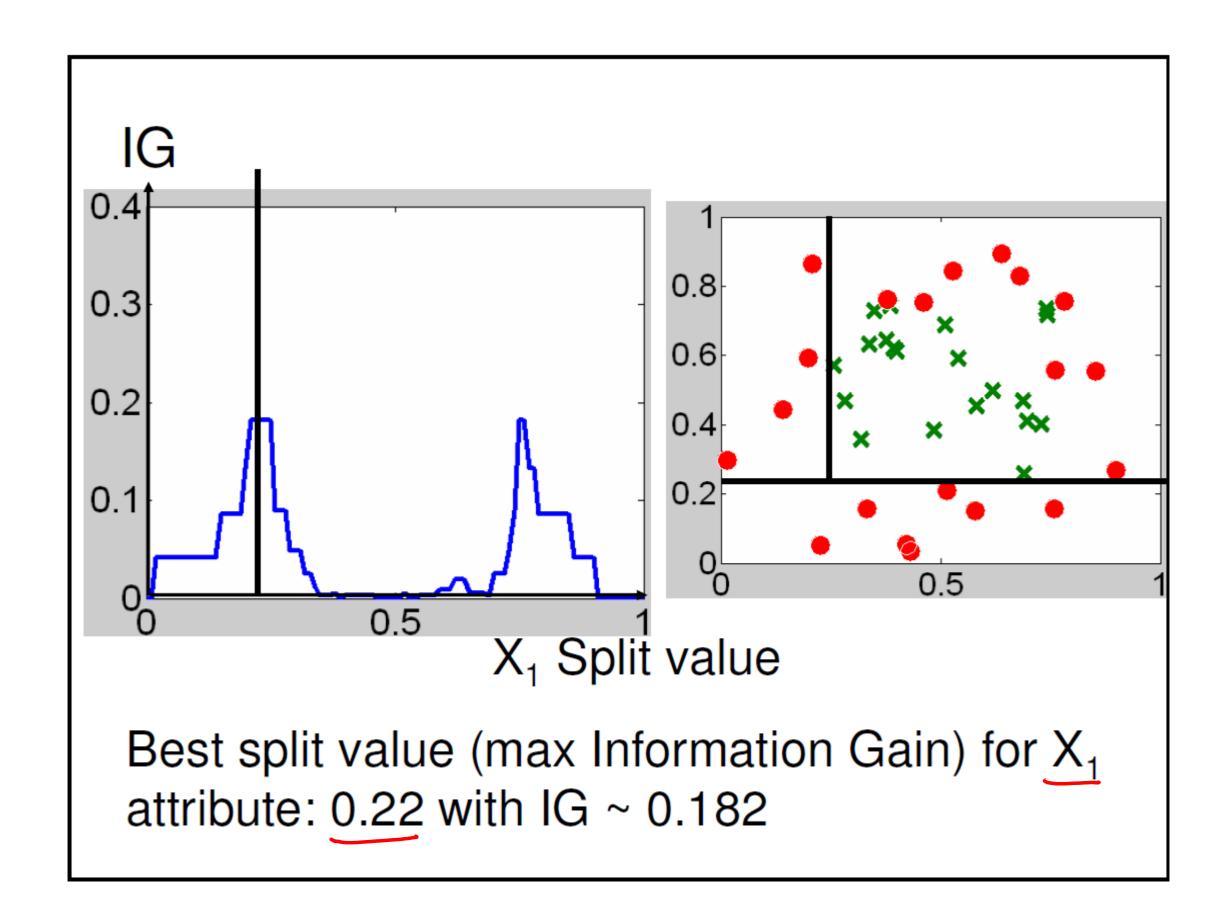


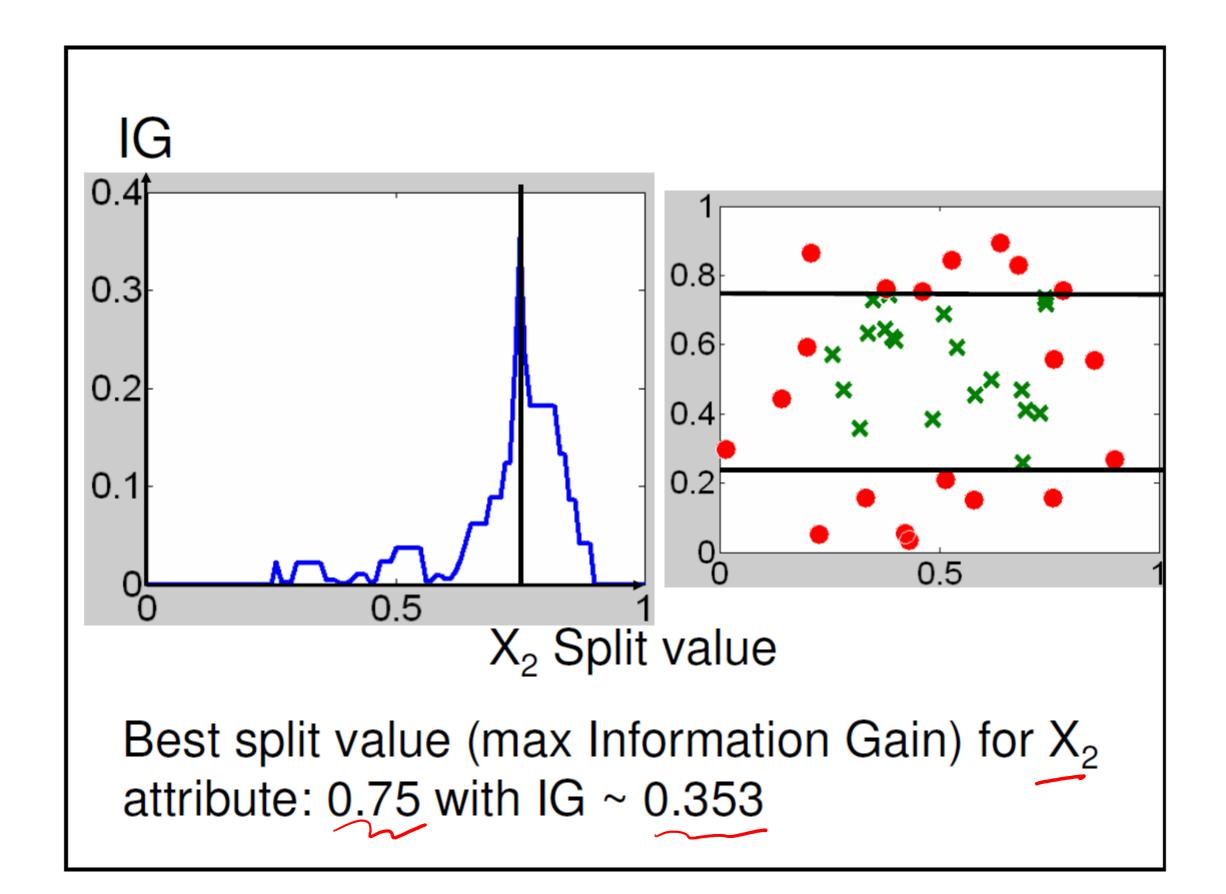


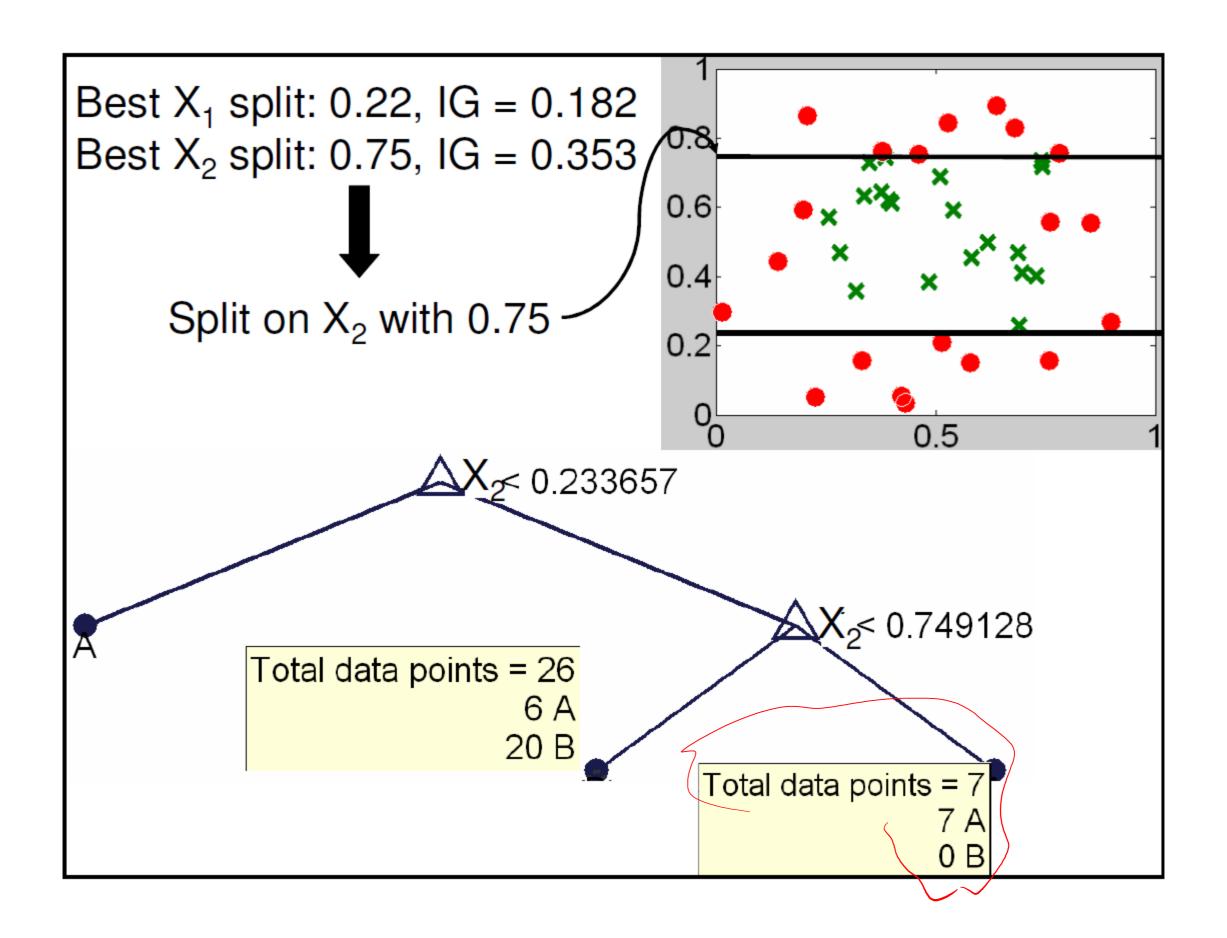


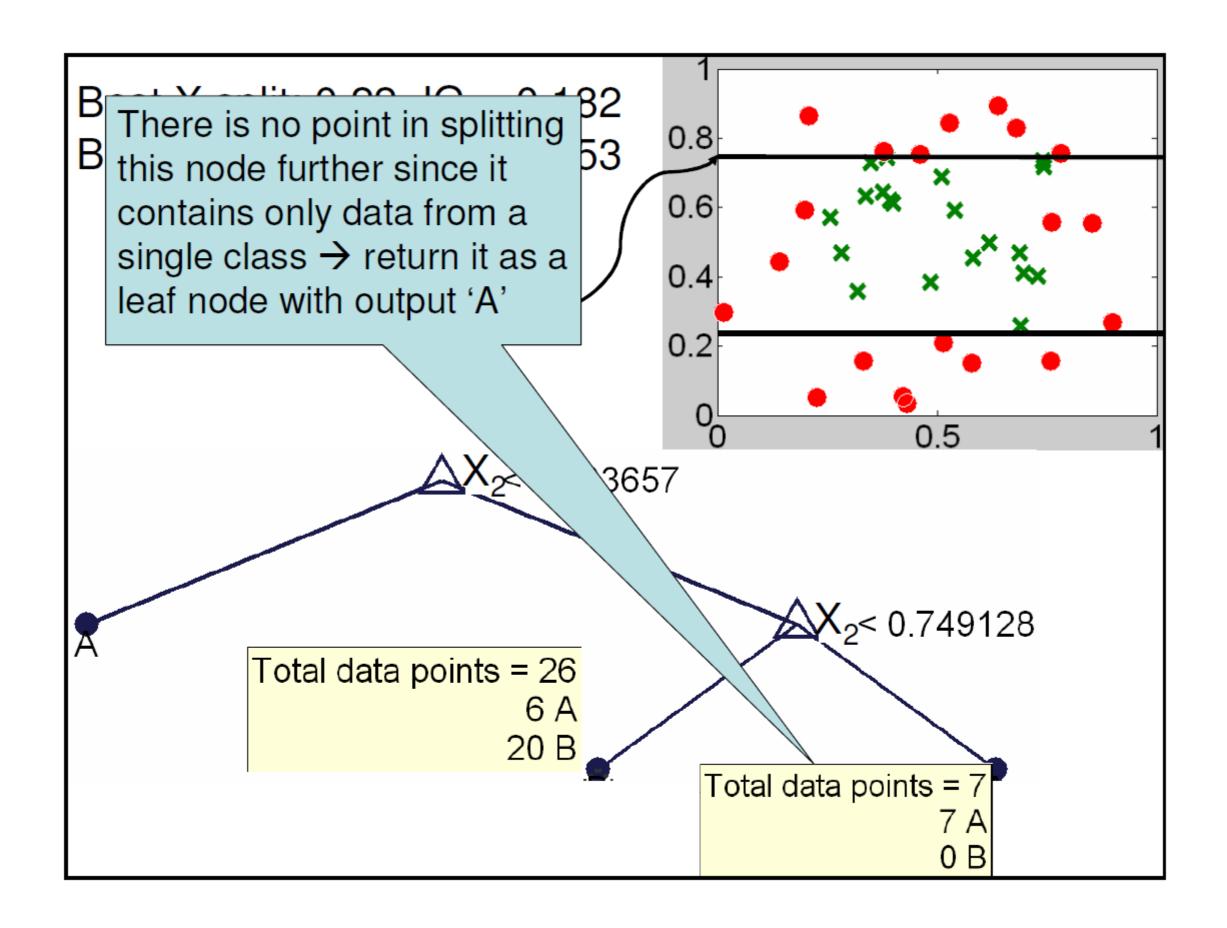
Left direction for smaller value, right direction for bigger value

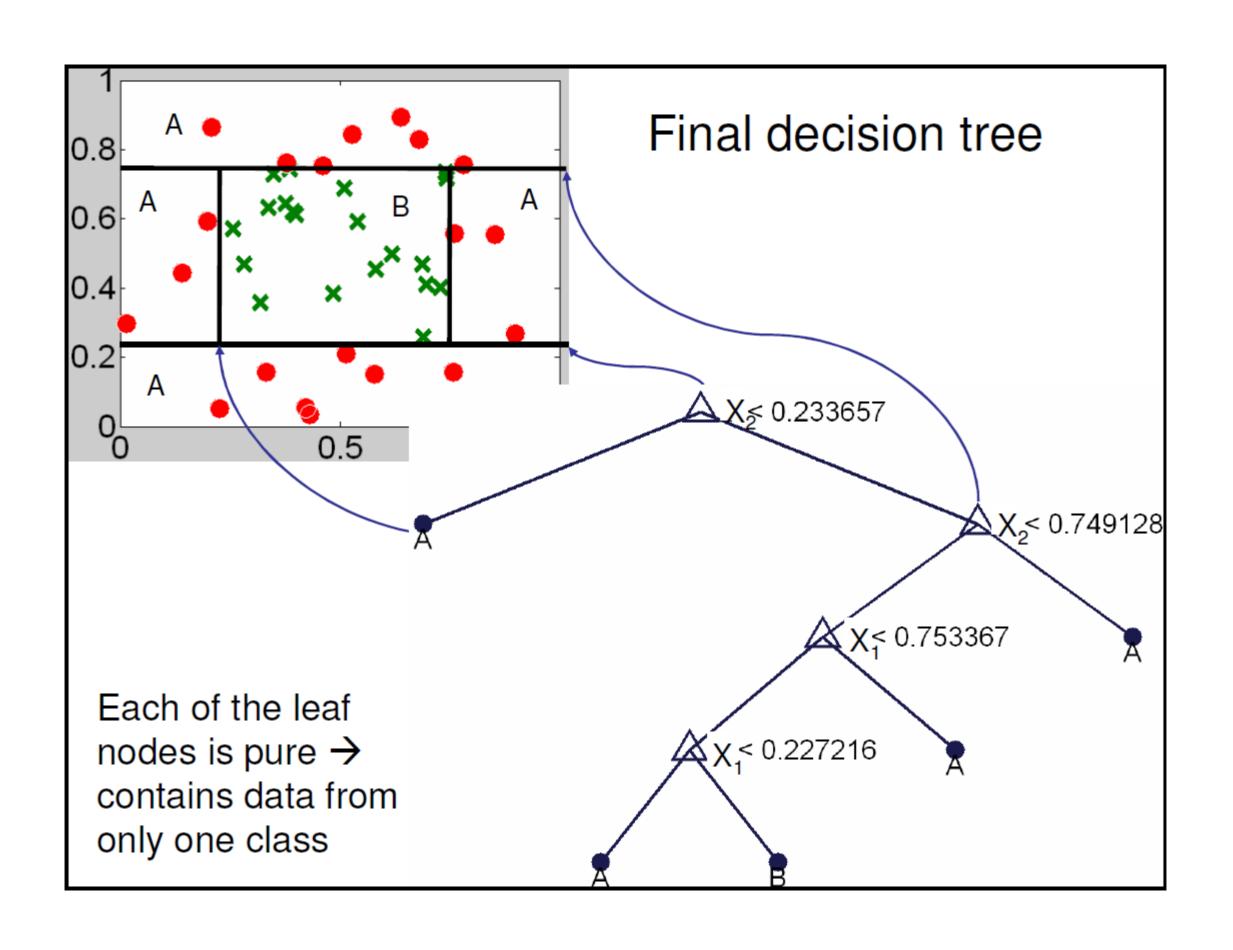


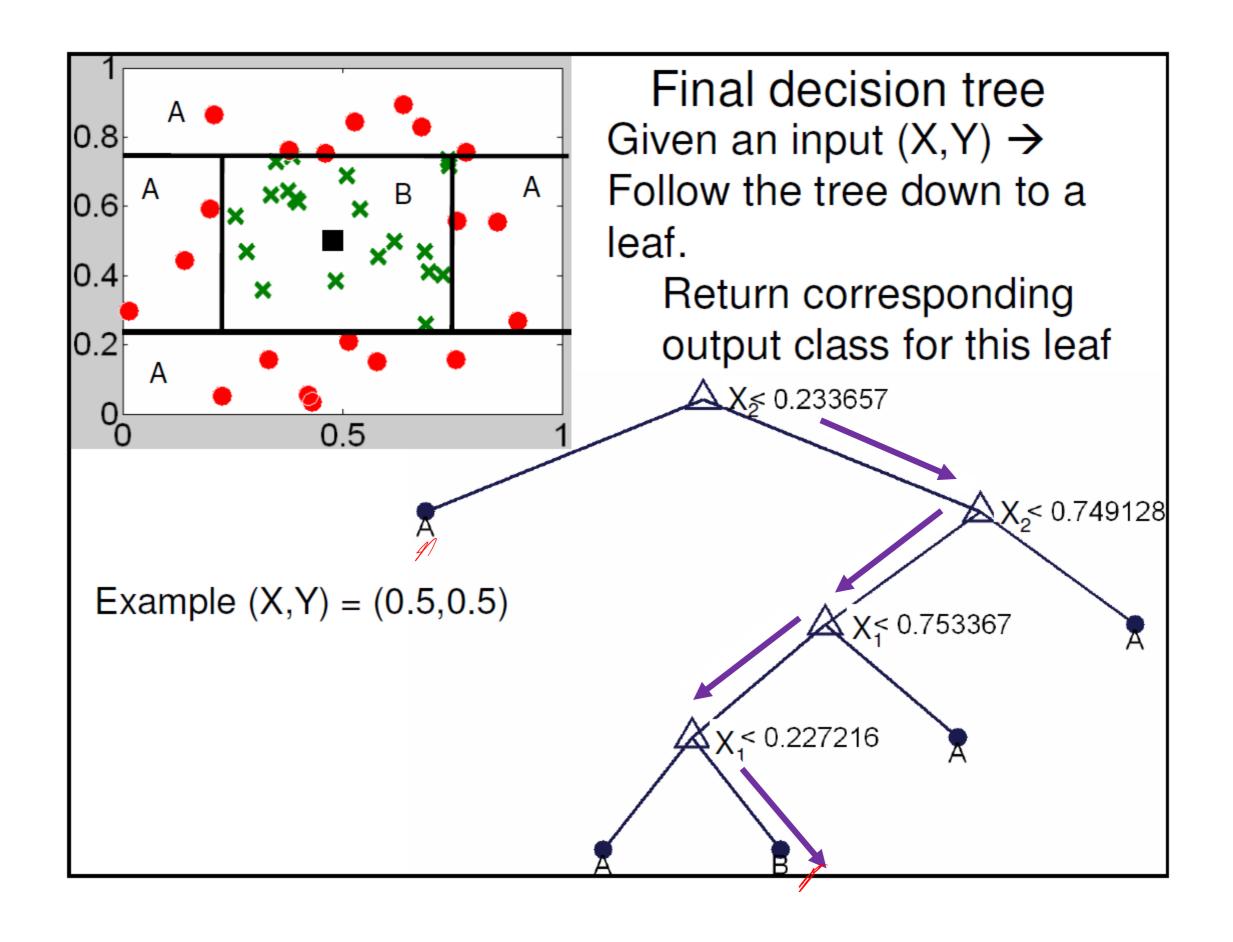








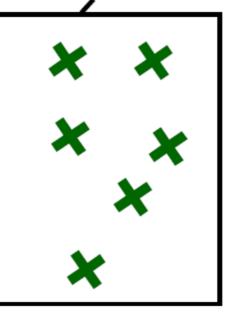




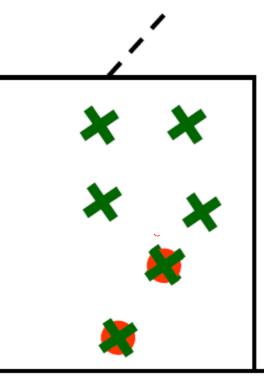
Basic Questions

- How to choose the <u>attribute/value</u> to split on at each level of the tree?
- When to stop splitting? When should a node be declared a leaf?
- If a leaf node is impure, how should the class label be assigned?
 - If the tree is too large, how can it be pruned?

Pure and Impure Leaves and When to Stop Splitting



All the data in the node comes from a single class \rightarrow We declare the node to be a leaf and stop splitting. This leaf will output the class of the data it contains



Several data points have exactly the same attributes even though they are from different class \rightarrow We cannot split any further \rightarrow We still declare the node to be a leaf, but it will output the class that is the majority of the classes in the node (in this example, 'B')

Decision Tree Algorithm (Continuous Attributes)

- LearnTree(X, Y)
- no of training points • Set X of R training vectors, each containing the values $(x_1,...,x_M)$ of duta *M* attributes $(X_1,...,X_M)$
 - A vector Y of R elements, where y_i = class of the jth datapoint
 - If all the datapoints in X have the same class value y
 - Return a leaf node that predicts y as output
 - If all the datapoints in X have the same attribute value $(x_1,...,x_M)$
 - Return a leaf node that predicts the majority of the class values in Y as output
 - Try all the possible attributes X_i and threshold t and choose the one, j^* , for which $IG(Y|X_i,t)$ is maximum
 - $-X_L$, Y_L = set of datapoints for which $x_{i^*} < t$ and corresponding classes
 - $-X_H$, Y_H = set of datapoints for which $X_{i^*} >= t$ and corresponding classes
 - Left Child \leftarrow LearnTree (X_i, Y_i)
 - Right Child ← LearnTree(X_H, Y_H)

Decision Tree Algorithm (Discrete Attributes)

- LearnTree(X, Y)
 - Input:
 - Set X of R training vectors, each containing the values $(x_1,...,x_M)$ of M attributes $(X_1,...,X_M)$
 - A vector Y of R elements, where y_i = class of the jth datapoint
 - If all the datapoints in X have the same class value y
 - Return a leaf node that predicts y as output
 - If all the datapoints in X have the same attribute value $(x_1,...,x_M)$
 - Return a leaf node that predicts the majority of the class values in Y as output
 - Try all the possible attributes X_j and choose the one, j^* , for which $IG(Y|X_j)$ is maximum
 - For every possible value v of X_{j^*} :
 - X_v , Y_v = set of datapoints for which x_{j^*} = v and corresponding classes
 - Child_v \leftarrow LearnTree(X_v, Y_v)

Decision Trees So Far

- Given N observations from training data, each with D attributes X and a class attribute Y, construct a sequence of tests (decision tree) to predict the class attribute Y from the attributes X
- Basic strategy for defining the tests ("when to split") → maximize the information gain on the training data set at each node of the tree
- Problems (next):
 - Computational issues
 How expensive is it to compute the IG
 - The tree will end up being much too big → pruning
 - Evaluating the tree on training data is dangerous -> overfitting

Basic Questions

- How to choose the attribute/value to split on at each level of the tree?
- When to stop splitting? When should a node be declared a leaf?
- If a leaf node is impure, how should the class label be assigned?

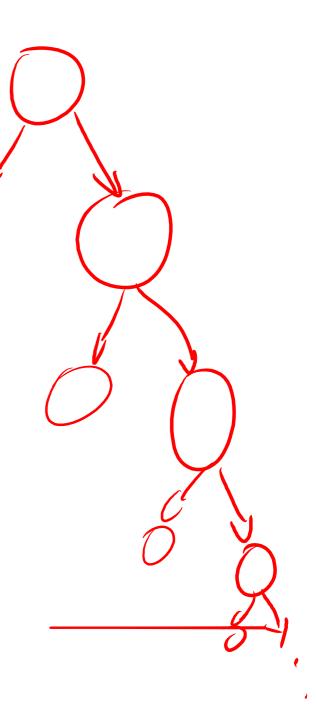
 If the tree is too large, how can it be pruned?

What will happen if a tree is too large?

Overfitting

High variance

Instability in predicting test data



How to avoid overfitting?

Acquire more training data

Remove irrelevant attributes (manual process – not always possible)

Grow full tree, then post-prune

Ensemble learning

Reduced-Error Pruning

Split data into training and validation sets

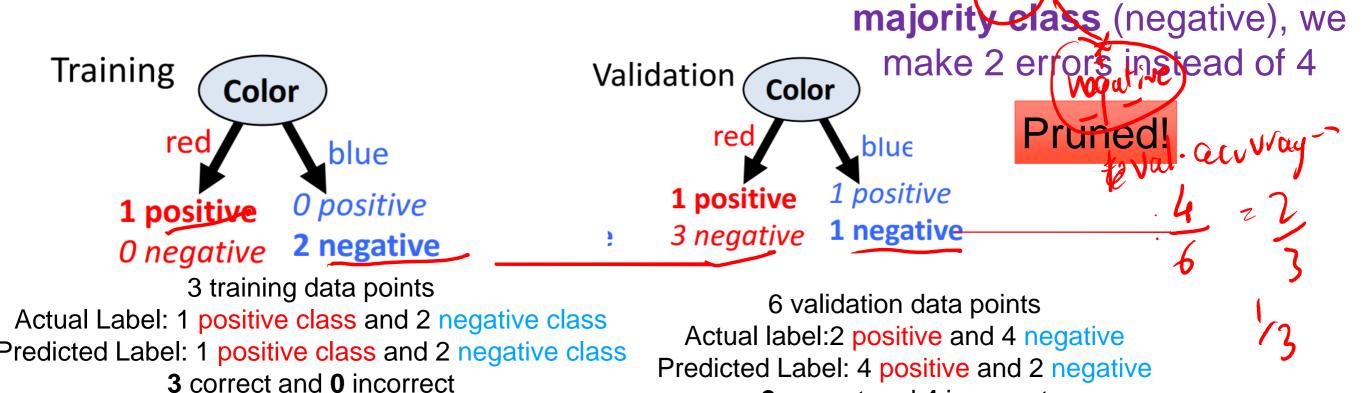
Grow tree based on training set

Do until further pruning is harmful:

- 1. Evaluate impact on validation set of pruning each possible node (plus those below it)
- 2. Greedily remove the node that most improves validation set accuracy

How to decide to remove it a node using pruning

- Pruning of the decision tree is done by replacing a whole subtree by a leaf node.
- The replacement takes place if a decision rule establishes that the expected error rate in the subtree is greater than in the single leaf.



2 correct and 4 incorrect