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Put an image in



Smaller Network: CNN

ÅWe know it is good to learn a small model.

ÅFrom this fully connected model, do we really need all the 

edges? 

ÅCan some of these be shared?



Consider learning an image:

ÅSome patterns are much smaller than the whole image

ñbeakòdetector

Can represent a small region with fewer parameters



Same pattern appears in different places:

They can be compressed!

What about training a lot of such ñsmallò detectors

and each detector must ñmove aroundò.

ñupper-left 

beakòdetector

ñmiddle beakò

detector

They can be compressed

to the same parameters.



A convolutional layer

A filter

A CNN is a neural network with some convolutional layers 

(and some other layers).  A convolutional layer has a number 

of filters that does convolutional operation. Neocognitron by 

Kunihiko Fukushima (1980).

Beak detector

Or Feature Map

Or Kernel



Convolution
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Filter 2
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These are the network 

parameters to be learned.

Each filter detects a 

small pattern (3 x 3). 



Convolution
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stride=1

Dot 

product



Convolution
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6 x 6 image
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Filter 1
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If stride=2



Convolution ïdiagonal 

edges?
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Convolution -

Vertical edges? 

1 0 0 0 0 1
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6 x 6 image

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2
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Repeat this for each filter
stride=1

Two 4 x 4 images

Forming 2 x 4 x 4 matrix

Feature

Map



Color image: RGB 3 channels
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Color image



1 0 0 0 0 1
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image
convolution
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36x
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Convolution v.s. Fully Connected

Fully-

connected
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6 x 6 image
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features 1st hidden layer
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Conventional 

Fully Connected 

layers

(FC layers)
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6 x 6 image
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Only connect to 

9 inputs, not 

fully connected
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fewer parameters!
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Shared weights

6 x 6 image

Fewer parameters

Even fewer parameters

Ex.
constrained to 

be identical
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An example classfier

using CNNs

Fully Connected 

Feedforward network

cat dog éé
Convolution

Max Pooling

Convolution

Max Pooling

Flattened

Can repeat 

many times



Max Pooling
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-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1



Why Pooling

ÅSubsampling pixels will not change the object

Subsampling

bird

bird

We can subsample the pixels to make image smaller

fewer parameters to characterize the image



A CNN compresses a fully connected network in 

two ways:

ÅReducing number of connections

ÅShared weights on the edges

ÅMoreover, Max pooling further reduces the complexity



Max Pooling

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0
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6 x 6 image

3 0

13
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30

2 x 2 image

Each filter 

is a channel

New image 

but smaller

Conv

Max

Pooling



Example network

Convolution

Max Pooling

Convolution

Max Pooling

Can repeat 

many times
A new image

The number of channels 

is the number of filters

Smaller than the original 

image

3 0

13

-1 1

30



Example network

Fully Connected 

Feedforward network

cat dog éé
Convolution

Max Pooling

Convolution

Max Pooling

Flattened

A new image

A new image



Flattening
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30 Flattened
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Fully Connected 

Feedforward network



Only modified the network structure and input 

format (vector -> 3-D tensor)CNN in Keras

Convolution

Max Pooling

Convolution

Max Pooling

input

1 -1 -1

-1 1 -1

-1 -1 1

-1 1 -1

-1 1 -1

-1 1 -1

There are 

25 3x3

filters.

é

é

Input_shape = ( 28 , 28 , 1)

1: black/white, 3: RGB28 x 28 pixels

3 -1

-3 1

3



Only modified the network structure and input 

format (vector -> 3-D array)CNN in Keras

Convolution

Max Pooling

Convolution

Max Pooling

Input

1 x 28 x 28

25 x 26 x 26

25 x 13 x 13

50 x 11 x 11

50 x 5 x 5




