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Put an image in



Smaller Network: CNN

• We know it is good to learn a small model.

• From this fully connected model, do we really need all the 

edges? 

• Can some of these be shared?



Consider learning an image:

• Some patterns are much smaller than the whole image

“beak” detector

Can represent a small region with fewer parameters



Same pattern appears in different places:

They can be compressed!

What about training a lot of such “small” detectors

and each detector must “move around”.

“upper-left 

beak” detector

“middle beak”

detector

They can be compressed

to the same parameters.



A convolutional layer

A filter

A CNN is a neural network with some convolutional layers 

(and some other layers).  A convolutional layer has a number 

of filters that does convolutional operation. Neocognitron by 

Kunihiko Fukushima (1980).

Beak detector

Or Feature Map

Or Kernel



Convolution
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These are the network 

parameters to be learned.

Each filter detects a 

small pattern (3 x 3). 



Convolution
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Convolution
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Convolution – diagonal 

edges?
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Convolution -

Vertical edges? 
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Repeat this for each filter
stride=1

Two 4 x 4 images

Forming 2 x 4 x 4 matrix

Feature

Map



Color image: RGB 3 channels
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Convolution v.s. Fully Connected

Fully-

connected
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Conventional 

Fully Connected 

layers

(FC layers)
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fewer parameters!
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Ex.
constrained to 

be identical
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An example classfier

using CNNs

Fully Connected 

Feedforward network

cat dog ……
Convolution

Max Pooling

Convolution

Max Pooling

Flattened

Can repeat 

many times



Max Pooling
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Why Pooling

• Subsampling pixels will not change the object

Subsampling

bird

bird

We can subsample the pixels to make image smaller

fewer parameters to characterize the image



A CNN compresses a fully connected network in 

two ways:

• Reducing number of connections

• Shared weights on the edges

• Moreover, Max pooling further reduces the complexity



Max Pooling
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Each filter 

is a channel

New image 

but smaller

Conv

Max

Pooling



Example network

Convolution

Max Pooling

Convolution

Max Pooling

Can repeat 

many times
A new image

The number of channels 

is the number of filters

Smaller than the original 

image
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Example network

Fully Connected 

Feedforward network

cat dog ……
Convolution

Max Pooling

Convolution

Max Pooling

Flattened

A new image

A new image



Flattening
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Fully Connected 

Feedforward network



Only modified the network structure and input 

format (vector -> 3-D tensor)CNN in Keras

Convolution

Max Pooling

Convolution

Max Pooling

input

1 -1 -1

-1 1 -1

-1 -1 1
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There are 

25 3x3

filters.

…

…

Input_shape = ( 28 , 28 , 1)

1: black/white, 3: RGB28 x 28 pixels

3 -1

-3 1

3



Only modified the network structure and input 

format (vector -> 3-D array)CNN in Keras

Convolution

Max Pooling

Convolution

Max Pooling

Input

1 x 28 x 28

25 x 26 x 26

25 x 13 x 13

50 x 11 x 11

50 x 5 x 5



Only modified the network structure and input 

format (vector -> 3-D array)CNN in Keras

Convolution

Max Pooling

Convolution

Max Pooling

Input

1 x 28 x 28

25 x 26 x 26

25 x 13 x 13

50 x 11 x 11

50 x 5 x 5

Flattened

1250

Fully connected 

feedforward network

Output + ReLU

+ ReLU



Number of Parameters

28
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25: 3X3
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Gray scaled-image

25 filters - Conv1

Convoluted result for 25 filters

Max Pooling

25X3X3+25 parameters

Result after Max Pooling

50 filters – Conv2

50X3X3X25+50 parameters

Convoluted result for 50 filters

Max Pooling

Result after Max Pooling



5

50
5

# neurons after flattening: 50*5*5=1250

…

1
1

…

1
1

…

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛… Σ

1
1

Flattening

10 neurons

100 neurons

FC layer
#parameters=1250*10

FC layer

#parameters=10*100

10 CNN Architecture 

https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d

