
CONVOLUTIONAL NEURAL NETWORK

Slides are based on Ming Li and Mahdi Roozbahani

Machine Learning CS 4641

𝑥0

⋮

𝑥𝑑

𝑥1 ℎ(𝑥)

ℎ 𝑥 = 𝑢(𝑥𝜃) → logistic regression

Σ

Activation
(Sigmoid)

Summation

𝑥𝜃

𝑥𝜃

𝑠𝑖𝑔𝑛(𝑥𝜃)
1

1 + exp(−𝑥𝜃)

max(0, 𝑥𝜃)

tanh(𝑥𝜃)

Put an image in

Smaller Network: CNN

• We know it is good to learn a small model.

• From this fully connected model, do we really need all the

edges?

• Can some of these be shared?

Consider learning an image:

• Some patterns are much smaller than the whole image

“beak” detector

Can represent a small region with fewer parameters

Same pattern appears in different places:

They can be compressed!

What about training a lot of such “small” detectors

and each detector must “move around”.

“upper-left

beak” detector

“middle beak”

detector

They can be compressed

to the same parameters.

A convolutional layer

A filter

A CNN is a neural network with some convolutional layers

(and some other layers). A convolutional layer has a number

of filters that does convolutional operation. Neocognitron by

Kunihiko Fukushima (1980).

Beak detector

Or Feature Map

Or Kernel

Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

……

These are the network

parameters to be learned.

Each filter detects a

small pattern (3 x 3).

Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

3 -1

stride=1

Dot

product

Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

3 -3

If stride=2

Convolution – diagonal

edges?

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

stride=1

Convolution -

Vertical edges?

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

Repeat this for each filter
stride=1

Two 4 x 4 images

Forming 2 x 4 x 4 matrix

Feature

Map

Color image: RGB 3 channels

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 -1 -1

-1 1 -1

-1 -1 1
Filter 1

-1 1 -1

-1 1 -1

-1 1 -1
Filter 2

1 -1 -1

-1 1 -1

-1 -1 1

1 -1 -1

-1 1 -1

-1 -1 1

-1 1 -1

-1 1 -1

-1 1 -1

-1 1 -1

-1 1 -1

-1 1 -1
Color image

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

image
convolution

-1 1 -1

-1 1 -1

-1 1 -1

1 -1 -1

-1 1 -1

-1 -1 1

1x

2x

……

36x

……

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

Convolution v.s. Fully Connected

Fully-

connected

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1

2

3

7

8…

31

32

33

4

34

1

0

0

0

0

1

0

1

0

0

1

0

5

6

35

36

1

0
features 1st hidden layer

…
…

Conventional

Fully Connected

layers

(FC layers)

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1
1

2

3

…

8

9
…

13

14

15

…

Only connect to

9 inputs, not

fully connected

4:

10:

16

1

0

0

0

0

1

0

0

0

0

1

1

3

fewer parameters!

𝜃1

𝜃2

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

1:

2:

3:

…

7:

8:

9:
…

13:

14:

15:

…

4:

10:

16:

1

0

0

0

0

1

0

0

0

0

1

1

3

-1

Shared weights

6 x 6 image

Fewer parameters

Even fewer parameters

Ex.
constrained to

be identical

𝜃1

𝜃2

𝜃1
𝜃2

An example classfier

using CNNs

Fully Connected

Feedforward network

cat dog ……
Convolution

Max Pooling

Convolution

Max Pooling

Flattened

Can repeat

many times

Max Pooling

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

Why Pooling

• Subsampling pixels will not change the object

Subsampling

bird

bird

We can subsample the pixels to make image smaller

fewer parameters to characterize the image

A CNN compresses a fully connected network in

two ways:

• Reducing number of connections

• Shared weights on the edges

• Moreover, Max pooling further reduces the complexity

Max Pooling

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

3 0

13

-1 1

30

2 x 2 image

Each filter

is a channel

New image

but smaller

Conv

Max

Pooling

Example network

Convolution

Max Pooling

Convolution

Max Pooling

Can repeat

many times
A new image

The number of channels

is the number of filters

Smaller than the original

image

3 0

13

-1 1

30

Example network

Fully Connected

Feedforward network

cat dog ……
Convolution

Max Pooling

Convolution

Max Pooling

Flattened

A new image

A new image

Flattening

3 0

13

-1 1

30 Flattened

3

0

1

3

-1

1

0

3

Fully Connected

Feedforward network

Only modified the network structure and input

format (vector -> 3-D tensor)CNN in Keras

Convolution

Max Pooling

Convolution

Max Pooling

input

1 -1 -1

-1 1 -1

-1 -1 1

-1 1 -1

-1 1 -1

-1 1 -1

There are

25 3x3

filters.

…

…

Input_shape = (28 , 28 , 1)

1: black/white, 3: RGB28 x 28 pixels

3 -1

-3 1

3

Only modified the network structure and input

format (vector -> 3-D array)CNN in Keras

Convolution

Max Pooling

Convolution

Max Pooling

Input

1 x 28 x 28

25 x 26 x 26

25 x 13 x 13

50 x 11 x 11

50 x 5 x 5

Only modified the network structure and input

format (vector -> 3-D array)CNN in Keras

Convolution

Max Pooling

Convolution

Max Pooling

Input

1 x 28 x 28

25 x 26 x 26

25 x 13 x 13

50 x 11 x 11

50 x 5 x 5

Flattened

1250

Fully connected

feedforward network

Output + ReLU

+ ReLU

Number of Parameters

28

28

25: 3X3

26

26

25

2
2

13

13
25

13

13
25

50: 3X3X25

3
3

25

25 3

3

11

11
50

2
2

5

50
5

3
3

Gray scaled-image

25 filters - Conv1

Convoluted result for 25 filters

Max Pooling

25X3X3+25 parameters

Result after Max Pooling

50 filters – Conv2

50X3X3X25+50 parameters

Convoluted result for 50 filters

Max Pooling

Result after Max Pooling

5

50
5

neurons after flattening: 50*5*5=1250

…

1
1

…

1
1

…

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛… Σ

1
1

Flattening

10 neurons

100 neurons

FC layer
#parameters=1250*10

FC layer

#parameters=10*100

10 CNN Architecture

https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d

