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Best Practices

* Train vs Test data: Do not mix them!!
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* K-fold validation for hyper-parameter optimizations
* Older books would suggest using a “validation set”
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Error measure

-

* True classifier -> f(x)

 Learned classifier, based on a hypothesis -> h(x)

* Error: E(h, f) —
 Almost always pointwise definition: e(h(x), f (x))
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e Examples:

 Squared error: e(h(x), f(x)) = (h(x) — f(x))?
* Binary error: e(h(x), f(x)) = | |h(x) # f(x)]|



From pointwise to overall

Overall error = E(h, f) = average of pointwise errors = e(h(x) — f(x))

In-sample error: E._(h) =YY e(h(xn) — f(xn))
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Ouj—of—sample error: Eg(h) = IE[e(h(xn) — f(xn))]
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How to choose the error measure

Finger-print verification:

Two Types of Errors:
* False accept (False Positive)
* False reject (False Negative)

Correct answers are True Positive
and True Negatives

How do we penalize these errors??
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How to choose the error measure

Finger-print verification:

Two Types of Errors:
* False accept
* False reject

How do we penalize errors:
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How to choose the error measure -
Supermarket

Supermarket verifying customers

+1 you
f —>

—1 intruder

False reject is costly:
Real customer not let in! Customer annoyed!

False accept is minor. Some random +1 -1
customer gets in; not that expensive.




How to choose the error measure - CIA

i
Finger-print verification for security .
f —> { |
* False acceptis BAD!! —1 intruder
* False reject is ok, try again © f
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Error measure for rare data cancer detection

Finger-print verification for security!!
* False accept is ok.
* False reject is terrible!!

More samples for non-cancer f
and less for cancer. +1 -1

Weight by data asymmetry and +1 0 +1

the penalty of missed detection. h
-1 +1po00© 0



Bias vs Variance
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Bias vs Variance

Low Variance High Variance

.
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Figure by Scott Fortmann-Roe

Low Bias

High Bias



http://scott.fortmann-roe.com/docs/BiasVariance.html

