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Classification
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1

⋮

𝑥𝑑

𝑥1
ℎ 𝑥 ∈ {−1,1}

ℎ 𝑥 = 𝑠𝑖𝑔𝑛 𝑥𝜃 → linear classification (Perceptron)

Σ



Decision Making: Dividing the Feature Space
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How to Determine the Decision Boundary?
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Bayes Decision Rule
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Bayes Decision Rule
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= 0 (decision 

boundary) 



• Generative models

Model prior and likelihood explicitly

“Generative” means able to generate synthetic data points

Examples: Naive Bayes, Hidden Markov Models

• Discriminative models

Directly estimate the posterior probabilities

No need to model underlying prior and likelihood distributions

Examples: Logistic Regression, SVM, Neural Networks
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What do People do in Practice?



Generative Model: Naive Bayes
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: Dimensions are independent.



“Naïve” conditional independence assumption

𝑃 𝑦 𝑥 =
𝑃 𝑥 𝑦 𝑃(𝑦)

𝑃 𝑥
=
𝑃 𝑥, 𝑦

𝑃(𝑥)

𝑃 𝑥, 𝑦𝑙𝑎𝑏𝑒𝑙=1 = P x1, … , xd, ylabel=1 = P x1 x2, , … , xd, ylabel=1 𝑃(x2, … , xd, ylabel=1)

Joint probability model:

= P x1 x2, , … , xd, ylabel=1 𝑃(x2|x3… , xd, ylabel=1)𝑃(x3, … , xd, ylabel=1)

= ⋯

= P x1 x2, , … , xd, ylabel=1 𝑃 x2 x3… , xd, ylabel=1 …𝑃 xd−1 𝑥𝑑 , 𝑦𝑙𝑎𝑏𝑒𝑙=1 𝑃 𝑥𝑑 𝑦𝑙𝑎𝑏𝑒𝑙=1 P(𝑦𝑙𝑎𝑏𝑒𝑙=1)

Naïve Bayes assumption: let’s rewrite it as:

𝑃 𝑥, 𝑦𝑙𝑎𝑏𝑒𝑙=1 = 𝑃 𝑥1 𝑦𝑙𝑎𝑏𝑒𝑙=1 𝑃 𝑥2 𝑦𝑙𝑎𝑏𝑒𝑙=1 …𝑃 𝑥𝑛 𝑦𝑙𝑎𝑏𝑒𝑙=1 𝑃 𝑦𝑙𝑎𝑏𝑒𝑙=1 =

𝑃(𝑦𝑙𝑎𝑏𝑒𝑙=1)ෑ

𝑖=1

𝑑

𝑃 𝑥𝑖 𝑦𝑙𝑎𝑏𝑒𝑙=1

Example
Gaussian naïve Bayes

A typical assumption

https://en.wikipedia.org/wiki/Naive_Bayes_classifier#Examples


Naïve Bayes cat vs dog!



Administrative things

• Project team composition due this weekend

• Quiz out today. Let us know if you have problems with it, and 

take as many as you can, it will only help!!

• Homework due next week. Deadlines will start getting closeby

from now. 



Naïve Bayes



Naïve Bayes



Discriminative Models
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Generative model
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Gaussian Naïve Bayes

𝑃 𝑦 = 1 𝑥 =
𝑃 𝑥 𝑦 = 1 𝑃(𝑦 = 1)

𝑃 𝑥
=

𝑃(𝑦 = 1)ς𝑖=1
𝑑 𝑃 𝑥𝑖 𝑦 = 1

𝑃(𝑥)

𝑑

𝑑



get exp(ln 𝑢 ) of numerator and denominator

𝑑

𝑑

𝑑

𝑑

labels



𝑑

𝑑

𝑑
=



𝑃 𝑦 = 1 𝑥 =
𝑑

𝑃 𝑦 = 1 𝑥 =
1

1 + exp[−(σ𝑖(𝜃𝑖𝑥𝑖) + 𝜃0)]
=

1

1 + exp(−𝑠)

2𝑑 + 1 → 𝑑 𝑚𝑒𝑎𝑛, 𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒, 𝑎𝑛𝑑 1 𝑓𝑜𝑟 𝑝𝑟𝑖𝑜𝑟

Number of parameters = 𝑑 + 1 → 𝜃0, 𝜃1, 𝜃2, … , 𝜃𝑑

Why not directly learning 𝑃 𝑦 = 1 𝑥 or 𝜃 parameters? 

Number of parameters: 

Gaussian Naïve Bayes is a subset of logistic regression



Logistic function for posterior probability

𝑔(𝑠)

Many equations can give us this shape

𝒔

𝑔 𝑠 =
𝑒𝑠

1 + 𝑒𝑠
=

1

1 + 𝑒−𝑠

Let’s use the following function:

It is easier to use this function for optimization

This formula is called sigmoid function

𝑠 = 𝑥𝜃



Sigmoid Function

𝑠 =෍

𝑖=0

𝑑

𝑥𝑖𝜃𝑖 = 𝜃0 + 𝜃1𝑥1 +⋯+ 𝜃𝑑𝑥𝑑

Soft classification

Posterior probability

1

⋮

𝑥𝑑

𝑥1
ℎ(𝑥)

ℎ 𝑥 = 𝑔(𝑥𝜃) → logistic regression

Σ

𝑔 𝑠 =
𝑒𝑠

1 + 𝑒𝑠
=

1

1 + 𝑒−𝑠



Three linear models𝑠 =෍

𝑖=0

𝑑

𝑥𝑖𝜃𝑖 = 𝜃0 + 𝜃1𝑥1 +⋯+ 𝜃𝑑𝑥𝑑

Hard classification

Soft classification

Posterior probability

1

⋮

𝑥𝑑

𝑥1
ℎ(𝑥)

ℎ 𝑥 = 𝑠𝑖𝑔𝑛 𝑥𝜃 → linear classification (Perceptron)

Σ

1

⋮

𝑥𝑑

𝑥1
ℎ(𝑥)

ℎ 𝑥 → linear regression

Σ

1

⋮

𝑥𝑑

𝑥1
ℎ(𝑥)

ℎ 𝑥 = 𝑔(𝑥𝜃) → logistic regression

Σ



𝑔 𝑠 is interpreted as probability

Example: Prediction of heart attacks

Input 𝒙: cholesterol level, age, weight, finger size, etc.

𝑔 𝑠 : probability of heart attack within a certain time

𝑠 = 𝑥𝜃 Let’s call this risk score

We can’t have a hard prediction here

ℎ𝜃 𝑥 = 𝑝(𝑦|𝑥) = ቊ
𝑔(𝑠), 𝑦 = 1
1 − 𝑔(𝑠), 𝑦 = 0

Using posterior probability directly



Logistic regression model

𝑝(𝑦|𝑥) =

1

1 + exp(−𝑥𝜃)
𝑦 = 1

1 −
1

1 + exp −𝑥𝜃
=

exp −𝑥𝜃

1 + exp −𝑥𝜃
𝑦 = 0

We need to find 𝜃 parameters, let’s set up log-likelihood for n datapoints  

This form is concave, negative of this form is convex

=෍

𝑖

𝜃𝑇𝑥𝑖
𝑇 𝑦𝑖 − 1 − log(1 + exp −𝑥𝑖𝜃 )

𝑙 𝜃 ≔ 𝑙𝑜𝑔ෑ

𝑖=1

𝑛

𝑝(𝑦𝑖 , |𝑥𝑖 , 𝜃)

https://stats.stackexchange.com/questions/324561/difference-between-convex-and-concave-functions


The gradient of 𝑙(𝜃)

෍

𝑖

𝑥𝑖
𝑇 𝑦𝑖 − 1 + 𝑥𝑖

𝑇 exp −𝑥𝑖𝜃

1 + exp(−𝑥𝑖𝜃)

=෍

𝑖

𝜃𝑇𝑥𝑖
𝑇 𝑦𝑖 − 1 − log(1 + exp −𝑥𝑖𝜃 )

𝑙 𝜃 ≔ 𝑙𝑜𝑔ෑ

𝑖=1

𝑛

𝑝(𝑦𝑖 , |𝑥𝑖 , 𝜃)



The Objective Function

28

max
𝜃

𝑙 𝜃 ≔ 𝑙𝑜𝑔ෑ

𝑖=1

𝑛

𝑝(𝑦𝑖 , |𝑥𝑖 , 𝜃)



Gradient Descent
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Gradient Ascent(concave)/Descent(convex) algorithm

𝜃𝑡+1 ← 𝜃𝑡 + 𝜂෍

𝑖

𝑥𝑖
𝑇 𝑦𝑖 − 1 + 𝑥𝑖

𝑇 exp −𝑥𝑖𝜃

1 + exp(−𝑥𝑖𝜃)



Logistic Regression
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𝑔 𝑠 =
𝑒𝑠

1 + 𝑒𝑠
=

1

1 + 𝑒−𝑠

𝑠 = 𝑥𝜃

𝑠

𝒔

𝑔 𝑠

𝑔 𝑠

𝑥𝜃 𝑥𝜃
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Multiclass Logistic Regression
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One-vs-all (one-vs-rest)

ℎ𝜃
1 𝑥

ℎ𝜃
2 𝑥

ℎ𝜃
3 𝑥

ℎ𝜃
(𝑖)

𝑥 = 𝑝 𝑦 = 1 𝑥, 𝜃 (𝑖 = 1,2,3)



One-vs-all (one-vs-rest)

Train a logistic regression ℎ𝜃
(𝑖)

𝑥 for each class 𝑖

To predict the label of a new input 𝑥, pick class 𝑖 that maximizes:

max
𝑖

ℎ𝜃
(𝑖)

𝑥



Take-Home Messages
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