

Naïve Bayes and Logistic Regression

Nakul Gopalan Georgia Tech Regression y(z)

Test
Days N
Test
Data

Mean Spitavov L(0)= 1, Zn (y(xi) - y (xi)) R(d)

sporte -> LASSO

0.1 -> 0.01 0.01, - 0.0001 Polynomial Reglession $y(n) = 1 + \alpha_1 x' + \alpha_2 x^2 - \alpha_n x^n$ Xn: xn y() = 1+ a12, + a222 · · + a42n Regularization -> et overfiting & generalization Lagronge Multipier:

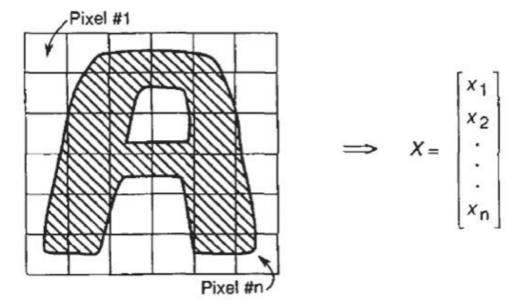
Outline

Generative and Discriminative Classification

- The Logistic Regression Model
- Understanding the Objective Function
- Gradient Descent for Parameter Learning
- Multiclass Logistic Regression

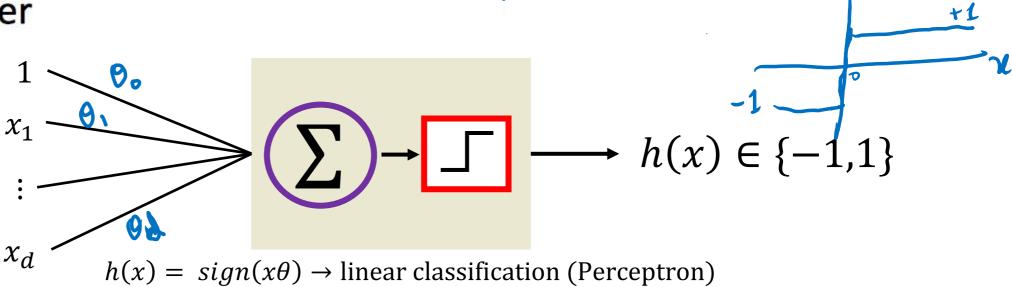
Classification

Represent the data



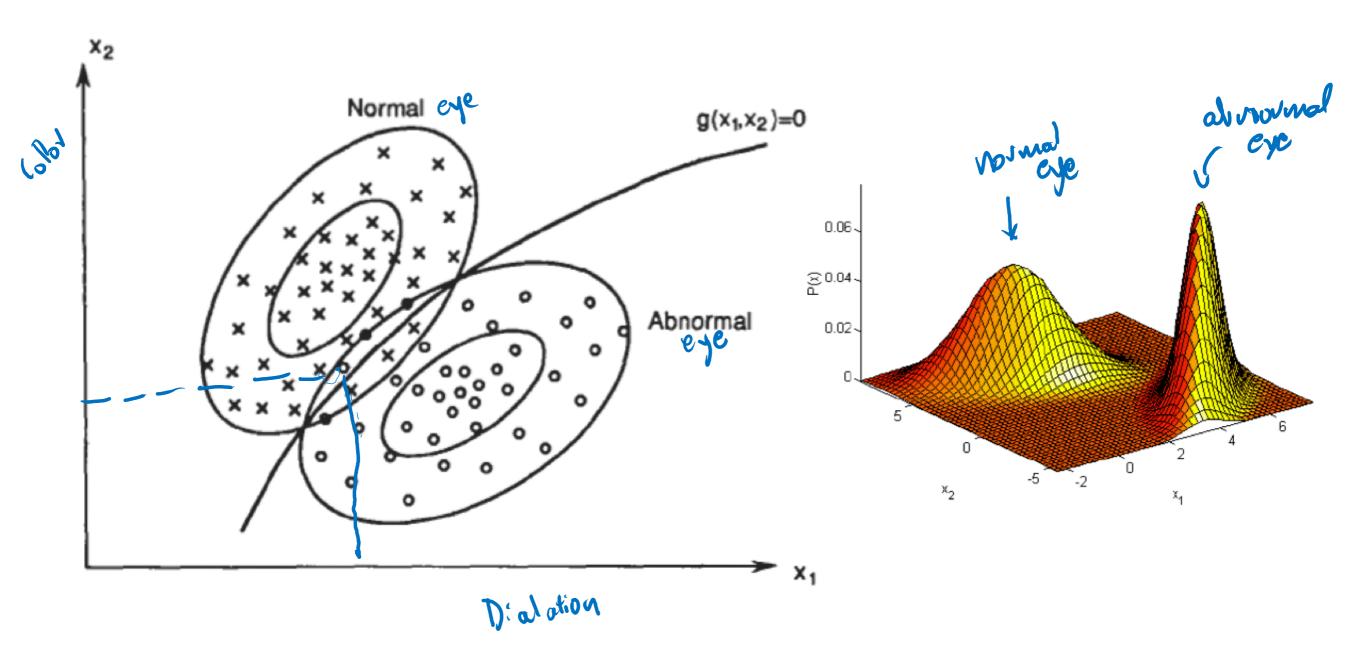
• A label is provided for each data point, eg., $y \in \{-1, +1\}$ single of character

Classifier



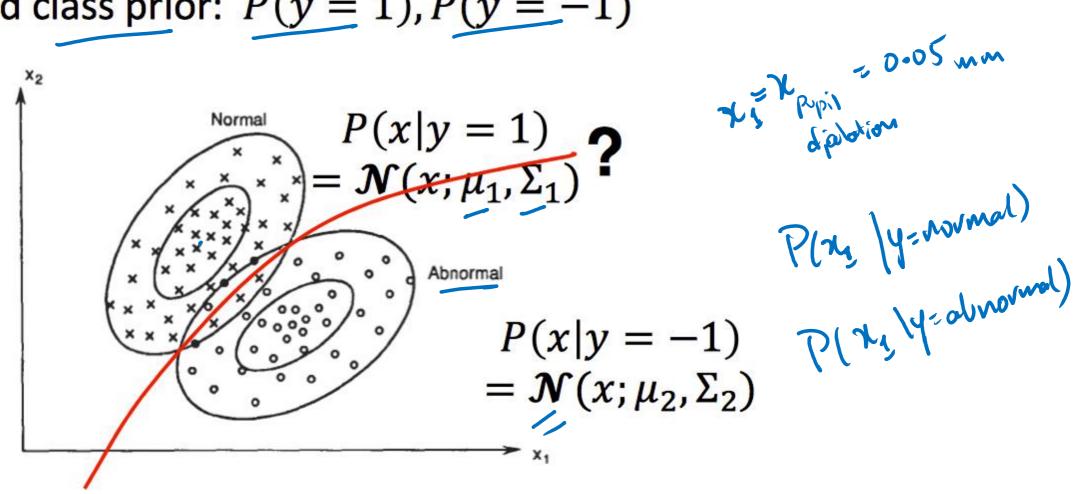
Decision Making: Dividing the Feature Space

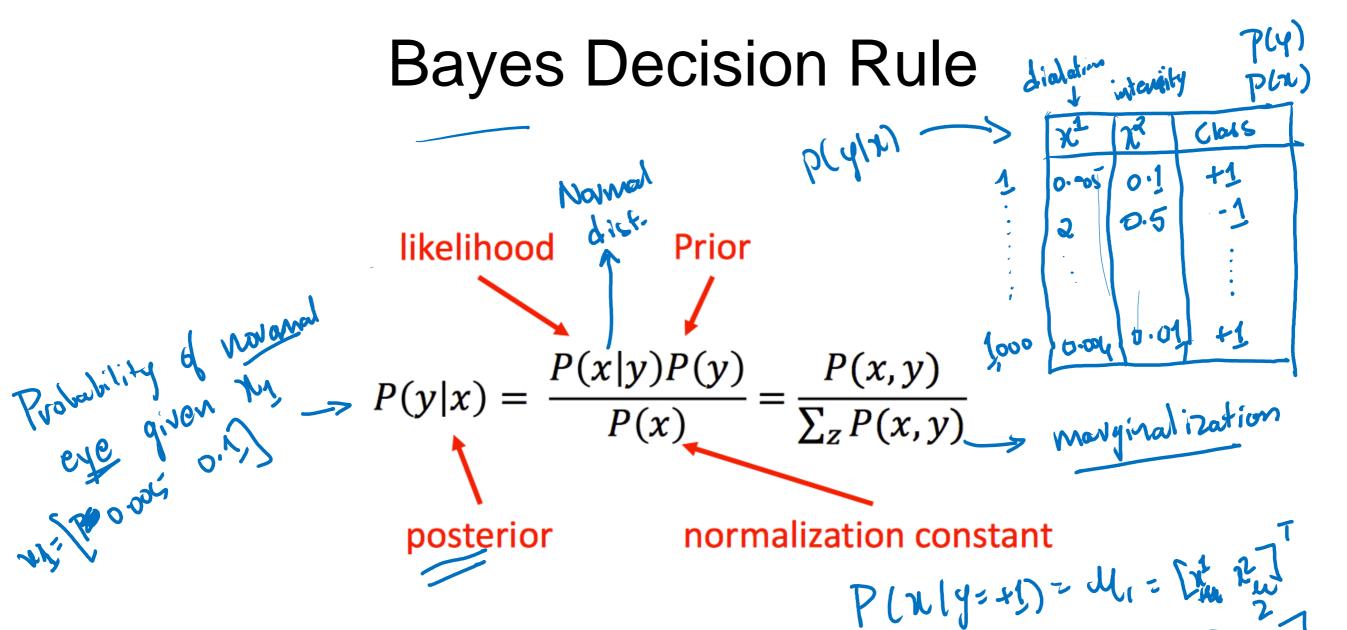
 Distributions of sample from normal (positive class) and abnormal (negative class) tissues



How to Determine the Decision Boundary?

- Given class conditional distribution: P(x|y=1), P(x|y=1)
 - -1), and class prior: P(y = 1), P(y = -1)





Prior: P(y)

Likelihood (class conditional distribution : p(x|y) =

 $\mathcal{N}(x|\mu_y,\Sigma_y)$

Posterior:
$$P(y|x) = \frac{P(y)\mathcal{N}(x|\mu_y, \Sigma_y)}{\sum_y P(y)\mathcal{N}(x|\mu_y, \Sigma_y)}$$

Bayes Decision Rule

- Learning: prior: p(y), class conditional distribution : p(x|y)
- The poster probability of a test point

sion rule:
$$q_{j}(x) := P(y = i | x) = \frac{P(x|y)P(y)}{P(x)}$$

$$= \frac{P(x|y)P(y)}{$$

- Bayes decision rule:
 - If $q_i(x) > q_j(x)$, then y = i, otherwise y = j
- Alternatively:
 - If ratio $l(x) = \frac{P(x|y=i)}{P(x|y=i)} > \frac{P(y=j)}{P(y=i)}$, then y = i, otherwise y = j
 - Or look at the log-likelihood ratio $h(x) = -\ln \frac{q_i(x)}{q_i(x)} = 0$ (decision boundary)

1 > 9/1/9:

0 > In(ai/q;)

What do People do in Practice?

Man, Vov. compute P(x1y)

Generative models

- Model prior and likelihood explicitly
- Examples: Italive Bayes, Illiadell IV

Discriminative models

- Directly estimate the posterior probabilities
- No need to model underlying prior and likelihood distributions
- Examples: Logistic Regression, SVM, Neural Networks

Generative Model: Naive Bayes

Use Bayes decision rule for classification

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)}$$

• But assume p(x|y=1) is fully factorized: Dimensions are independent.

$$p(x|y=1) = \prod_{i=1}^{d} p(x_i|y=1)$$

$$p(x=[x,x]|y=1) = \prod_{i=1}^{d} p(x_i|y=1)$$

 Or the variables corresponding to each dimension of the data are independent given the label

"Naïve" conditional independence assumption

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)} = \frac{P(x,y)}{P(x)}$$

Joint probability model:

t probability model:
$$P(A_1B) = P(A_1B) p(B)$$

$$P(x, y_{label=1}) = P(x_1, ..., x_d, y_{label=1}) = P(x_1 | x_2, ..., x_d, y_{label=1}) P(x_2, ..., x_d, y_{label=1})$$

$$= P(x_1|x_2, ..., x_d, y_{label=1}) P(x_2|x_3 ..., x_d, y_{label=1}) P(x_3, ..., x_d, y_{label=1})$$

$$= \cdots$$

$$= P(x_1|x_2, ..., x_d, y_{label=1}) P(x_2|x_3 ..., x_d, y_{label=1}) ... P(x_{d-1}|x_d, y_{label=1}) P(x_d|y_{label=1}) P(y_{label=1})$$

Naïve Bayes assumption: let's rewrite it as:

$$P(x,y_{label=1}) = P(x_1|y_{label=1})P(x_2|y_{label=1}) \dots P(x_n|y_{label=1})P(y_{label=1}) = P(y_{label=1}) \prod_{i=1}^{d} P(x_i|y_{label=1})$$

$$P(y_{label=1}) \prod_{i=1}^{d} P(x_i|y_{label=1})$$

$$A typical assumption$$

Naïve Bayes cat vs dog!

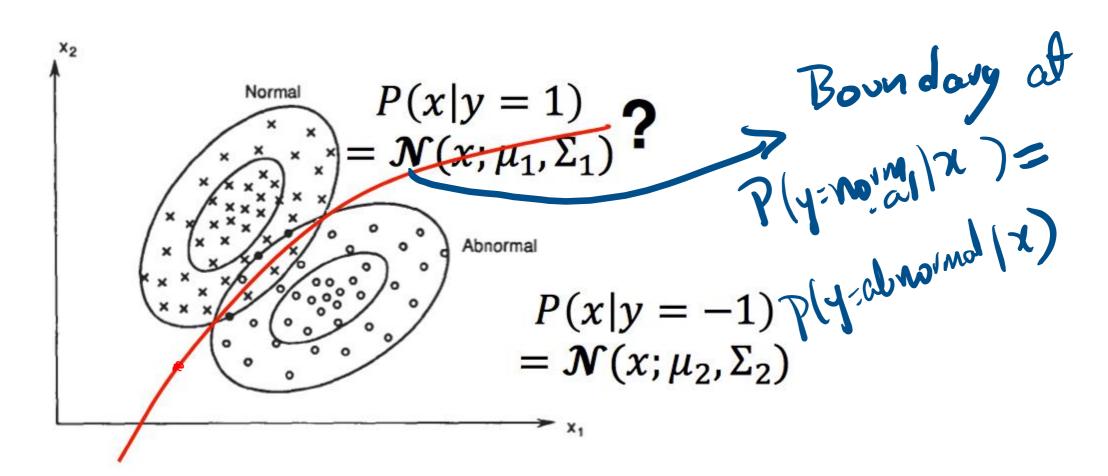
4	Weight by	72 ht.	Xz tail leagth	
Cat	2	• 5	1	
dog	6	2	2	
209	30	3		
cat	1	05	0.5	- tit (ot).
	7 & U-	cat) =	P(yzcat)	Plloto
PCX. [1012	9		TO WAS ON	
\			P(0)	cox
			PC	

Soint fict

Administrative things

- Project team composition due this weekend
- Quiz out today. Let us know if you have problems with it, and take as many as you can, it will only help!!
- Homework due next week. Deadlines will start getting closeby from now.

Naïve Bayes



For col vs dog:

P(yz cot | x) = Rig(yz dog | x)

2 -> features like tail length, height, weight.

Naïve Bayes

Discriminative Models

- Directly estimate decision boundary $h(x) = -\ln \frac{q_i(x)}{q_j(x)}$ or posterior distribution p(y|x)
 - Logistic regression, Neural networks
 - Do not estimate p(x|y) and p(y)

- Why discriminative classifier?
 - Avoid difficult density estimation problem
 - Empirically achieve better classification results

Generative model

Outline

- Generative and Discriminative Classification
- The Logistic Regression Model
- Understanding the Objective Function
- Gradient Descent for Parameter Learning
- Multiclass Logistic Regression

Gaussian Naïve Bayes

$$P(y = 1|x) = \frac{P(x|y = 1)P(y = 1)}{P(x)} = \frac{P(y = 1)\prod_{i=1}^{d} P(x_i|y = 1)}{P(x)}$$

$$P(B|A) P(A)$$

$$P(B|A) P(A)$$

$$= \prod_{i=1}^{d} p(x_i|y = 1, \mu_{1i}, \sigma_{1i}) \qquad \text{Nound dist.}$$

$$= \prod_{i=1}^{d} \frac{1}{\sqrt{2\pi}\sigma_{1i}} \exp\left(-\frac{1}{2\sigma_{1i}^2}(x_{1i} - \mu_{1i})^2\right)$$

$$\text{Close which footive}$$

$$\text{Prior: } p(y = 1) = \pi_1$$

P(y/2) = P(x/y) . P(y) /P(x) Posterior: $p(y = 1 | x, \mu, \sigma, \pi)$ $\pi_1 \prod_{i=1}^d \frac{1}{\sqrt{2\pi}\sigma_{1i}} \exp\left(-\frac{1}{2\sigma_{1i}^2}(x_i - \mu_{1i})^2\right)$ Moderate $\sum_{k=1}^{2} \pi_k \prod_{i=1}^{d} \frac{1}{\sqrt{2\pi}\sigma_{ki}} \exp\left(-\frac{1}{2\sigma_{ki}^2}(x_i - \mu_{ki})^2\right)$ get $\exp(\ln(u))$ of numerator and denominator wilded uz exp(ln(u)) $\exp\left(-\sum_{i=1}^{d} \left(\frac{1}{2\sigma_{1i}^{2}}(x_{i} - \mu_{1i})^{2} + \log \sigma_{1i} + C\right) + \log \pi_{1}\right)$

$$= \frac{\exp\left(-\sum_{i=1}^{d} \left(\frac{1}{2\sigma_{1i}^{2}} (x_{i} - \mu_{1i})^{2} + \log \sigma_{1i} + C\right) + \log \pi_{1}\right)}{\sum_{k=1}^{2} \exp\left(-\sum_{i=1}^{d} \left(\frac{1}{2\sigma_{ki}^{2}} (x_{i} - \mu_{ki})^{2} + \log \sigma_{ki} + C\right) + \log \pi_{k}\right)}$$

$$= \frac{\exp\left(-\sum_{i=1}^{d} \left(\frac{1}{2\sigma_{i}^{2}}(x_{i} - \mu_{1i})^{2} + \log \sigma_{i} + C\right) + \log \pi_{1}\right)}{\sum_{k=1}^{2} \exp\left(-\sum_{l=1}^{d} \left(\frac{1}{2\sigma_{i}^{2}}(x_{i} - \mu_{ki})^{2} + \log \sigma_{i} + C\right) + \log \pi_{k}\right)}$$

$$= \frac{1}{1 + \exp\left(-\sum_{i=1}^{d} \left(x_{i} \frac{1}{\sigma_{i}}(\mu_{1i} - \mu_{2i}) + \frac{1}{\sigma_{i}^{2}}(\mu_{1i}^{2} - \mu_{2i}^{2})\right) + \log \frac{\pi_{2}}{\pi_{1}}\right)}$$

$$= \frac{1}{1 + \exp\left(-\sum_{i=1}^{d} \left(x_{i} \frac{1}{\sigma_{i}}(\mu_{1i} - \mu_{2i}) + \frac{1}{\sigma_{i}^{2}}(\mu_{1i}^{2} - \mu_{2i}^{2})\right) + \log \frac{\pi_{2}}{\pi_{1}}\right)}$$

$$= \frac{1}{1 + \exp\left(-\sum_{i=1}^{d} \left(x_{i} \frac{1}{\sigma_{i}}(\mu_{1i} - \mu_{2i}) + \frac{1}{\sigma_{i}^{2}}(\mu_{1i}^{2} - \mu_{2i}^{2})\right) + \log \frac{\pi_{2}}{\pi_{1}}\right)}$$

$$P(y = 1|x) = \frac{1}{1 + \exp\left(-\sum_{i=1}^{d} \left(x_i \frac{1}{\sigma_i} (\mu_{1i} - \mu_{2i}) + \frac{1}{\sigma_i^2} (\mu_{1i}^2 - \mu_{2i}^2)\right) + \log\frac{\pi_2}{\pi_1}\right)}$$

Number of parameters:

 $2d + 1 \rightarrow d$ mean, d variance, and 1 for prior

$$P(y = 1|x) = \frac{1}{1 + \exp[-(\sum_{i}(\theta_{i}x_{i}) + \theta_{0})]} = \frac{1}{1 + \exp(-s)}$$

Number of parameters = $\frac{d}{d} + 1 \rightarrow \theta_0, \theta_1, \theta_2, \dots, \theta_d$

Why not directly learning P(y = 1|x) or θ parameters?

Gaussian Naïve Bayes is a subset of logistic regression

Logistic function for posterior probability

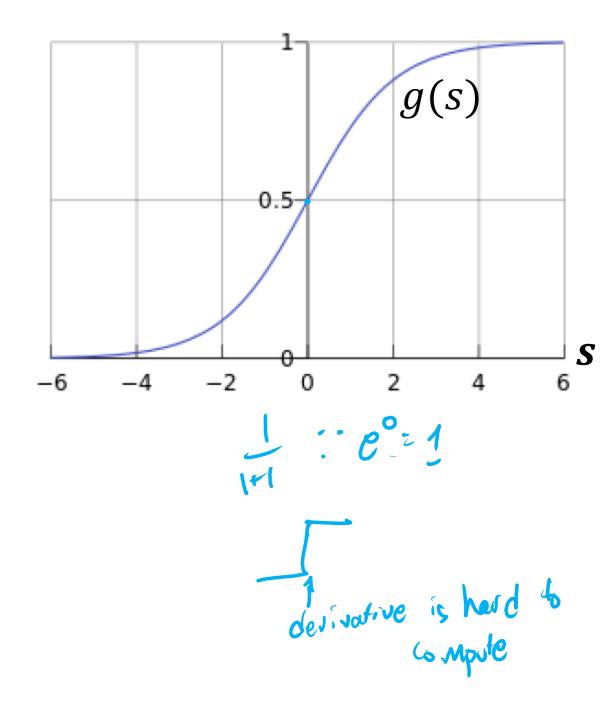
Let's use the following function:

$$g(s) = \frac{e^s}{1 + e^s} = \frac{1}{1 + e^{-s}}$$
 $s = x\theta$

This formula is called sigmoid function

It is easier to use this function for optimization

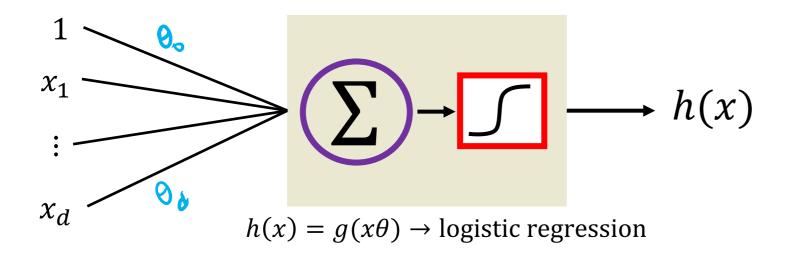
Many equations can give us this shape



$$g(s) = \frac{e^s}{1 + e^s} = \frac{1}{1 + e^{-s}}$$

Sigmoid Function

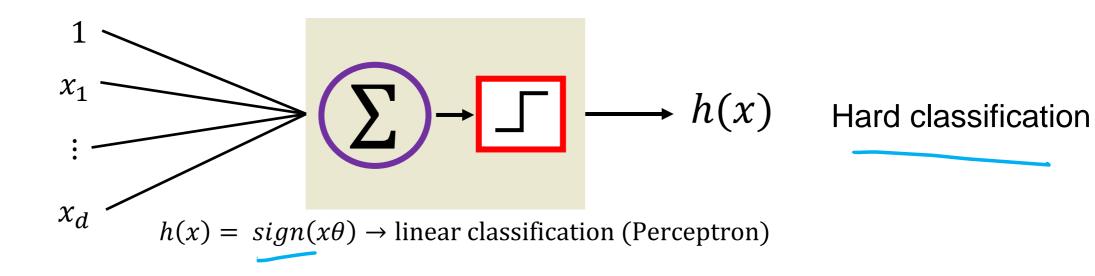
$$s = \sum_{i=0}^{d} x_i \theta_i = \theta_0 + \theta_1 x_1 + \dots + \theta_d x_d$$

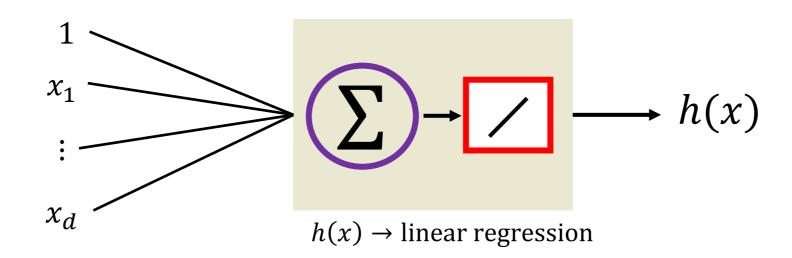


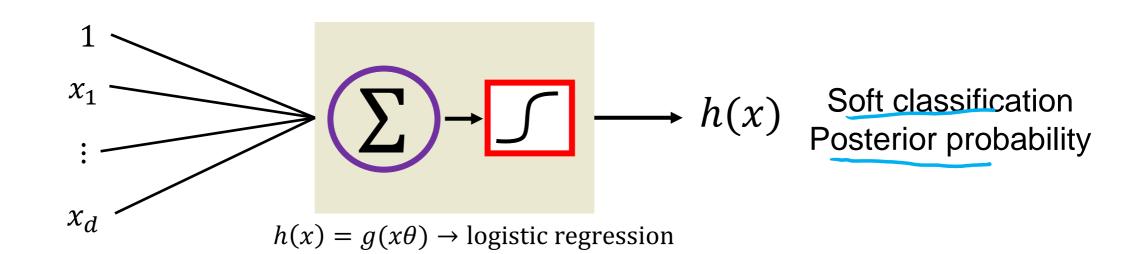
Soft classification Posterior probability

$$s = \sum_{i=0}^{a} x_i \theta_i = \theta_0 + \theta_1 x_1 + \dots + \theta_d x_d$$

Three linear models







g(s) is interpreted as probability

Example: Prediction of heart attacks

Input x: cholesterol level, age, weight, finger size, etc.

g(s): probability of heart attack within a certain time

We can't have a hard prediction here

 $s = x\theta$ Let's call this risk score

$$g(\varsigma) = \frac{1}{e^{\varsigma}+1}$$

$$h_{\theta}(x) = p(y|x) = \begin{cases} g(s), & y = 1 \\ 1 - g(s), & y = 0 \end{cases}$$
 Using posterior probability directly

Logistic regression model

$$p(y|x) = \begin{cases} \frac{1}{1 + \exp(-x\theta)} & \text{if } y = 1\\ 1 - \frac{1}{1 + \exp(-x\theta)} = \frac{\exp(-x\theta)}{1 + \exp(-x\theta)} \end{cases} \qquad y = 1$$

We need to find θ parameters, let's set up log-likelihood for **n** datapoints

$$l(\theta) \coloneqq log \prod_{i=1}^{n} p(y_i, | x_i, \theta)$$

$$= \sum_{i} \theta^T x_i^T(y_i - 1) - log(1 + exp(-x_i\theta))$$

This form is concave, negative of this form is convex

The gradient of $l(\theta)$

$$l(\theta) \coloneqq \log \prod_{i=1}^{n} p(y_i, | x_i, \theta)$$

$$= \sum_{i} \theta^T x_i^T(y_i - 1) - \log(1 + \exp(-x_i \theta))$$
ent
$$\frac{\partial l(\theta)}{\partial y_i} = \sum_{i} x_i^T(y_i - 1) + x_i^T \frac{\exp(-x_i \theta)}{\partial y_i}$$

Gradient

$$\frac{\partial l(\theta)}{\partial \theta} = \sum_{i} x_i^T (y_i - 1) + x_i^T \frac{\exp(-x_i \theta)}{1 + \exp(-x_i \theta)}$$

Setting it to 0 does not lead to closed form solution

The Objective Function

 Find θ, such that the conditional likelihood of the labels is maximized

$$\max_{\theta} l(\theta) \coloneqq \log \prod_{i=1}^{n} p(y_i, | x_i, \theta)$$

ullet Good news: l(heta) is concave function of heta , and there is a single

global optimum.

$$l\left(\frac{1}{3}\theta_{1} + \frac{2}{3}\theta_{2}\right)$$

$$a \int_{0}^{\infty} \left(\theta_{1}\right) d\theta_{2} d\theta_{2}$$

$$l(\theta_{1})$$

$$\frac{1}{3}l(\theta_{1}) + \frac{2}{3}l(\theta_{2})$$

$$l(\theta)$$

Bad new: no closed form solution (resort to numerical method)

Gradient Descent

 One way to solve an unconstrained optimization problem is gradient descent

Given an initial guess, we iteratively refine the guess by taking

the direction of the negative gradient

 Think about going down a hill by taking the steepest direction at each step

Update rule

$$x_{k+1} = x_k - \gamma_k \nabla f(x_k)$$

 γ_k is called the step size or learning rate

Gradient Ascent(concave)/Descent(convex) algorithm

• Initialize parameter
$$\theta^0$$
• Do
$$\theta^{t+1} \leftarrow \theta^t + \eta \sum_i x_i^T (y_i - 1) + x_i^T \frac{\exp(-x_i \theta)}{1 + \exp(-x_i \theta)}$$
• While the $||\theta^{t+1} - \theta^t|| > \epsilon$

we do not need:
$$p(x_i) p(y_i)$$

we dod not need:

p(x), P(y), P(xly)

P(y|x)

Logistic Regression

$$g(s) = \frac{e^s}{1 + e^s} = \frac{1}{1 + e^{-s}}$$

$$s = x\theta$$

$$g(s)$$

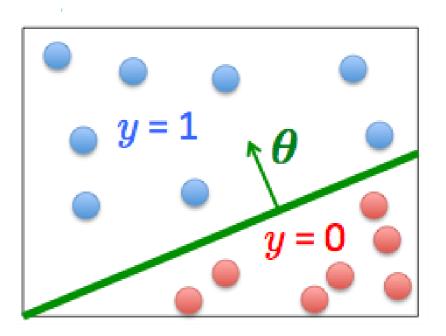
$$s = x\theta$$

$$s$$

$$x\theta \text{ should be large negative values for negative instances}$$

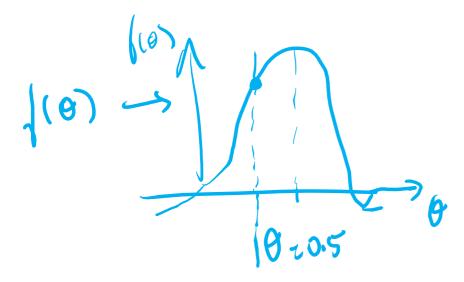
$$x\theta \text{ should be large positive values for positive instances}$$

- · Assume a threshold and...
 - Predict y = 1 if $g(s) \ge 0.5$
 - Predict y = 0 if g(s) < 0.5



Outline

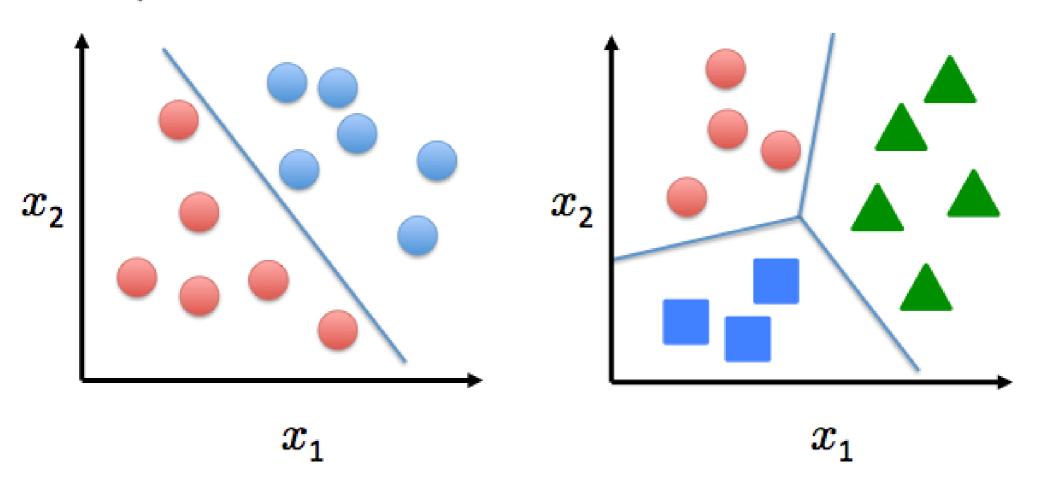
- Generative and Discriminative Classification
- The Logistic Regression Model
- Understanding the Objective Function
- Gradient Descent for Parameter Learning
- Multiclass Logistic Regression



Multiclass Logistic Regression

Binary classification:

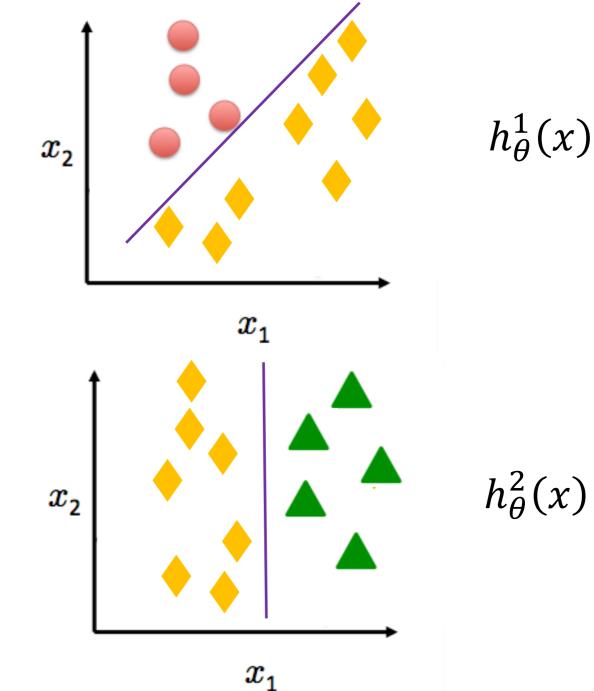
Multi-class classification:

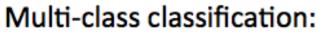


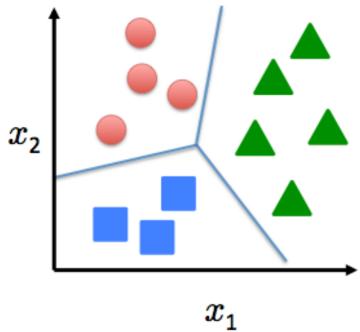
Disease diagnosis: healthy / cold / flu / pneumonia

Object classification: desk / chair / monitor / bookcase

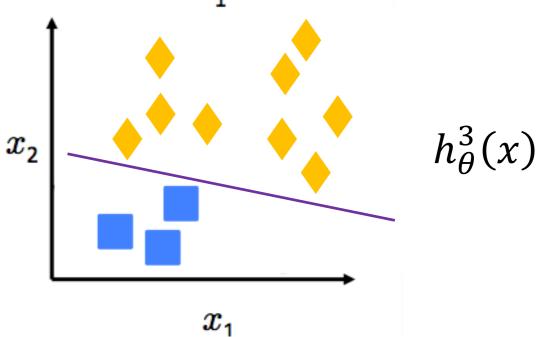
One-vs-all (one-vs-rest)







$$h_{\theta}^{(i)}(x) = p(y = 1|x,\theta) (i = 1,2,3)$$



One-vs-all (one-vs-rest)

Train a logistic regression $h_{\theta}^{(i)}(x)$ for each class i

To predict the label of a new input x, pick class i that maximizes:

$$\max_{i} h_{\theta}^{(i)}(x)$$

Take-Home Messages

- Generative and Discriminative Classification
- The Logistic Regression Model
- Understanding the Objective Function
- Gradient Descent for Parameter Learning
- Multiclass Logistic Regression