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Recap

• Linear regression:

• Y = θX

• MSE



Polynomial regression



Polynomial regression when order not known



Outline

• Overfitting and regularized learning

• Ridge regression

• Lasso regression

• Determining regularization strength
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Regression: Recap
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Regression: Recap
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d
d

d
d𝑧 = 1, 𝑥, 𝑥2, … , 𝑥𝑑 ∈ 𝑅𝑑

𝑦 = 𝑧𝜃







Which One is Better?
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No, this can lead to overfitting!

D=0 D=1

D=9D=3



The Overfitting Problem
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• The training error is very low, but the error on test set is large.

• The model captures not only patterns but also noisy nuisances 

in the training data.

D=9



The Overfitting Problem
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• In regression, overfitting is often associated with large Weights

(severe oscillation)

• How can we address overfitting?

D=9



Regularization 
(smart way to cure overfitting disease )

Fit a linear line on sinusoidal with just two data points 

Put a brake on fitting



Who is the winner?

ҧ𝑔 𝑥 : average over all lines

bias=0.21; var=1.69 bias=0.23; var=0.33



Minimize 𝐸 𝜃 +
𝜆

𝑁
𝜃𝑇𝜃

Regularized Learning

Why this term leads to 

regularization of parameters

𝑁 𝑁
𝜃 𝜃 𝜃



Polynomial Model

Let’s rewrite it as:

𝑦 = 𝜃0 + 𝜃1𝑥 + 𝜃2𝑥
2 +⋯+ 𝜃𝑑𝑥

𝑑 + 𝜖

𝑦 = 𝜃0 + 𝜃1𝑧1 + 𝜃2𝑧2 +⋯+ 𝜃𝑑𝑧d + 𝜖 = 𝒛𝜽



Regularizing is just constraining the weights (𝜽)

For example: let’s do a hard constraining

𝑦 = 𝜃0 + 𝜃1𝑧1 + 𝜃2𝑧2 +⋯+ 𝜃𝑑𝑧d

subject to

𝜃𝑑 = 0 𝑓𝑜𝑟 𝑑 > 2

𝑦 = 𝜃0 + 𝜃1𝑧1 + 𝜃2𝑧2 + 0 +⋯+ 0



Let’s not penalize 𝜃 in such a harsh way
let’s cut them some slack

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝐸 𝜃 =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − 𝑧𝑖𝜃
2

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
1

𝑁
z𝜃 − 𝑦 𝑇 z𝜃 − 𝑦

Subject to  𝜃𝑡𝜃 ≤ 𝐶

For simplicity let’s call 𝜃𝑙𝑖𝑛 as weights’ solution for non constrained one 

and 𝜃 for the constrained model.



𝐸 𝜃 =
1

𝑁
z𝜃 − 𝑦 𝑇 z𝜃 − 𝑦

Possible graph for 𝐸 𝜃 for different values of 𝜃0 and 𝜃1and given 

observation data

3D view Top view



Gradient of 𝜃𝑡𝜃

𝜃 =
𝜃0
𝜃1

⇒ 𝜃𝑡 𝜃 = 𝜃0
2 + 𝜃1

2

If you imagine standing at a point (𝜃0, 𝜃1), 
𝛻(𝜃𝑇𝜃) tells you which direction you should 

travel to increase the value of 𝜃𝑇𝜃 most rapidly.

𝛻 𝜃𝑇𝜃 =

𝜕

𝜕(𝜃0)
𝜃𝑇𝜃

𝜕

𝜕(𝜃1)
𝜃𝑇𝜃

=
2𝜃0
2𝜃1

≈
𝜃0
𝜃1

𝛻 𝜃𝑇𝜃 is a vector field 

any line passing through the center of the 

circle



Plotting the regularization term 𝜃𝑡𝜃

𝜃 =
𝜃0
𝜃1

⇒ 𝜃𝑡 𝜃 = 𝜃0
2 + 𝜃1

2

3D view Top view



𝐸 𝜃 =
1

𝑁
z𝜃 − 𝑦 𝑇 z𝜃 − 𝑦

𝜃𝑙𝑖𝑛

𝜃𝑙𝑖𝑛 is the solution (min absolute)

𝐸 𝜃 :   which is constant on the surface of the ellipsoid

Find a solution in 𝜃𝑡𝜃
that minimizes 𝐸 𝜃

Subject to 𝜃𝑡𝜃 ≤ 𝐶

𝜃0

𝜃1



Constraint and Loss

𝜃𝑙𝑖𝑛

𝜃1

𝜃0



Considering the below 𝐸 𝜃 and 𝐶
what is a 𝜃 candidate here?

𝜃𝑙𝑖𝑛

𝜃𝑡𝜃 = 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 = 𝐶

𝐸 𝜃

𝛻𝐸 𝜃

𝛻𝐸: the gradient (rate) in objective function 

which minimizes error (orthogonal to ellipse. 

Changes happen in orthogonal direction)

What is the orthogonal direction on the other surface?

It is just 𝜃, a line passing through center of 

the circle

𝛻(𝜃𝑡𝜃)
Applying a constrain 𝜃𝑡𝜃, where 

the best solution happens?

On the boundary of the circle, as it is the 

closest one to the minimum absolute



Considering the below 𝐸 𝜃 and 𝐶
what is the bew 𝜃 solution here?

𝜃𝑙𝑖𝑛

𝐸 𝜃

𝜃

𝛻𝐸(𝜃)

𝛻(𝜃𝑡𝜃)

𝛻𝐸 𝜃 ∝ −𝜃

𝛻𝐸 𝜃 = −2
𝜆

𝑁
𝜃

𝛻𝐸 𝜃 + 2
𝜆

𝑁
𝜃 = 0

Let’s do integration

Minimize 𝐸 𝜃 +
𝜆

𝑁
𝜃𝑇𝜃

𝐶 ↑ 𝜆 ↓



Outline

• Overfitting and regularized learning

• Ridge regression

• Lasso regression

• Determining regularization strength
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Ridge Regression
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𝑁 𝑁

d d𝑓(𝑥, 𝜃) = 𝜃0 + 𝜃1𝑧1 + 𝜃2𝑧2 +⋯+ 𝜃𝑑𝑧d + 𝜖 = 𝒛𝜽

𝑁 𝑁
𝜃 𝜃 𝜃



Solving for the Weights 𝜃
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D

d

𝑧(𝑥1)𝜃
𝑧(𝑥2)𝜃

𝑧(𝑥𝑛)𝜃

𝑧𝜃

𝜃0
𝜃1

𝜃𝑑

𝑧1(𝑥1) 𝑧𝑑(𝑥1)…

𝑧1(𝑥2) 𝑧𝑑(𝑥2)…

𝑧1(𝑥𝑛) 𝑧𝑑(𝑥𝑛)…

𝑧

𝑧𝜃
𝜃0

𝜃2

𝜃1
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𝑁 𝑁

𝑁𝑁

𝑁𝑁

𝜃 𝜃 𝜃

𝜃𝑦𝑖 − 𝑧𝑖𝜃
2 +

𝜆

𝑁
𝜃 2

𝑦𝑖 − 𝑧𝜃 2 +
𝜆

𝑁
𝜃 2

𝜃

𝑑𝜃
= −𝑧𝑇 𝑦 − 𝑧𝜃 + 𝜆𝜃

𝜃

𝑧𝑇𝑧 + 𝜆𝐼 𝜃 = 𝑧𝑇𝑦

𝜃 = 𝑧𝑇𝑧 + 𝜆𝐼 −1𝑧𝑇𝑦
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Dx1 DxD DxN Nx1

N>D

𝜃 = 𝑧𝑇𝑧 + 𝜆𝐼 −1 𝑧𝑇 𝑦

𝜃 = 𝑧𝑇𝑧 −1𝑧𝑇𝑦 = 𝑧+𝑦

D

𝜃 𝑧𝑇𝑦

𝑧+ 𝑧

𝑧𝑇𝑧
𝑧



Ridge Regression Example
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𝑁 𝑁

D+1

D+1

𝑓 𝑥, 𝜃 = 𝑧𝜃 𝑧: 𝑥 → 𝑧

෨𝐸 𝜃 =
1

𝑁
෍

𝑖=1

𝑁

𝑓 𝑥𝑖 , 𝜃 − 𝑦𝑖
2 +

𝜆

𝑁
𝜃 2 𝜃

D,
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D = 7
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D = 3 D = 5



Outline

• Overfitting and regularized learning

• Ridge regression

• Lasso regression

• Determining regularization strength
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Regularized Regression
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Now let’s look at another regularization choice.

𝜃 𝜃

𝜃

𝜃

𝜃



The Lasso Regularization (norm one)
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𝜃 𝜃

𝜃

𝜃

𝜃



Let’s say we have two parameters (𝜃0 𝑎𝑛𝑑 𝜃1)

𝜃𝑙𝑖𝑛

𝐸 𝜃 :   which is constant on the surface of the ellipsoid

𝜃0

𝜃1

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐸 𝜃 =
1

𝑁
z𝑤 − 𝑦 𝑇 z𝜃 − 𝑦

Subject to  𝜽 ≤ 𝑪

𝑪

𝑪

−𝑪

−𝑪

Sharp edges

𝜃 =
𝜃0
𝟎

Interesting way for 

feature selection



Outline

• Overfitting and regularized learning

• Ridge regression

• Lasso regression

• Determining regularization strength

38



Leave-One-Out Cross Validation
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K-Fold Cross Validation
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Choosing λ Using Validation Dataset

Pick up the lambda with the lowest 

mean value of rmse calculated by 

Cross Validation approach



Take-Home Messages

• What is overfitting

• What is regularization

• How does Ridge regression work

• Sparsity properties of Lasso regression

• How to choose the regularization coefficient λ
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