Regularized Linear Regression

Nakul Gopalan
Georgia Tech

Recap

- Linear regression:
- $Y=\theta X$
- MSE

Polynomial regression

Polynomial regression when order not known

Outline

- Overfitting and regularized learning
- Ridge regression
- Lasso regression
- Determining regularization strength

Regression: Recap

- Suppose we are given a training set of N observations
$\left(x_{1}, \ldots, x_{N}\right)$ and $\left(y_{1}, \ldots, y_{N}\right)$
- Regression problem is to estimate $\mathrm{y}(\mathrm{x})$ from this data

Regression: Recap

- Want to fit a polynomial regression model

$$
y=\theta_{0}+\theta_{1} x+\theta_{2} x^{2}+\cdots+\theta_{d} x^{d}+\epsilon
$$

- $z=\left\{1, x, x^{2}, \ldots, x^{d}\right\} \in R^{d}$ and $\theta=\left(\theta_{0}, \theta_{1}, \theta_{2}, \ldots, \theta_{d}\right)^{\top}$

$$
y=z \theta
$$

Real

Regression
Problem!!

Sol. (a)

Which One is Better?

- Can we increase the maximal polynomial degree to very large, such that the curve passes through all training points?

No, this can lead to overfitting!

The Overfitting Problem

- The training error is very low, but the error on test set is large.
- The model captures not only patterns but also noisy nuisances in the training data.

The Overfitting Problem

- In regression, overfitting is often associated with large Weights (severe oscillation)
- How can we address overfitting?

Regularization (smart way to cure overfitting disease)

without regularization

with regularization $\xrightarrow{\text { Put a brake on fitting }}$

Fit a linear line on sinusoidal with just two data points

Who is the winner?

$\bar{g}(x)$: average over all lines
without regularization

bias=0.21; var=1.69
with regularization

bias=0.23; var=0.33

Regularized Learning

Why this term leads to
 Minimize
 $$
E(\theta)+\frac{\lambda}{N} \theta^{T} \theta
$$

- Cost function - squared loss:

$$
\widetilde{E}(\theta)=\frac{1}{N} \sum_{i=1}^{N}\{\underbrace{\text { target value }} \underbrace{f\left(x_{i}, \theta\right)-y_{i}}\}^{2}+\underbrace{\frac{\lambda}{N}\|\theta\|^{2}}
$$

regularization

Polynomial Model

Want to fit a polynomial regression model

$$
y=\theta_{0}+\theta_{1} x+\theta_{2} x^{2}+\cdots+\theta_{d} x^{d}+\epsilon
$$

Let's rewrite it as:

$$
y=\theta_{0}+\theta_{1} z_{1}+\theta_{2} z_{2}+\cdots+\theta_{d} z_{\mathrm{d}}+\epsilon=z \boldsymbol{\theta}
$$

Regularizing is just constraining the weights (θ)

For example: let's do a hard constraining

$$
\begin{gathered}
y=\theta_{0}+\theta_{1} z_{1}+\theta_{2} z_{2}+\cdots+\theta_{d} z_{\mathrm{d}} \\
\text { subject to } \\
\theta_{d}=0 \text { for } d>2 \\
y=\theta_{0}+\theta_{1} z_{1}+\theta_{2} z_{2}+0+\cdots+0
\end{gathered}
$$

Let's not penalize θ in such a harsh way let's cut them some slack

$$
\begin{gathered}
\theta=\operatorname{argmin}_{\theta} E(\theta)=\frac{1}{n} \sum_{i=1}^{n}\left(y^{i}-z_{i} \theta\right)^{2} \\
\text { Minimize } \frac{1}{N}(\mathrm{z} \theta-y)^{T}(\mathrm{z} \theta-y) \\
\text { Subject to } \theta^{t} \theta \leq C
\end{gathered}
$$

For simplicity let's call $\theta_{\text {lin }}$ as weights' solution for non constrained one and θ for the constrained model.

$$
E(\theta)=\frac{1}{N}(\mathrm{z} \theta-y)^{T}(\mathrm{z} \theta-y)
$$

Possible graph for $E(\theta)$ for different values of θ_{0} and θ_{1} and given observation data

3D view

Top view

Gradient of $\theta^{t} \theta$

$$
\theta=\left[\begin{array}{c}
\theta_{0} \\
\theta_{1}
\end{array}\right] \quad \Rightarrow \theta^{t} \theta=\theta_{0}^{2}+\theta_{1}^{2}
$$

If you imagine standing at a point $\left(\theta_{0}, \theta_{1}\right)$,
$\nabla\left(\theta^{T} \theta\right)$ tells you which direction you should travel to increase the value of $\theta^{T} \theta$ most rapidly.

$$
\nabla\left(\theta^{T} \theta\right)=\left[\begin{array}{l}
\frac{\partial}{\partial\left(\theta_{0}\right)}\left(\theta^{T} \theta\right) \\
\frac{\partial}{\partial\left(\theta_{1}\right)}\left(\theta^{T} \theta\right)
\end{array}\right]=\left[\begin{array}{l}
2 \theta_{0} \\
2 \theta_{1}
\end{array}\right] \approx\left[\begin{array}{l}
\theta_{0} \\
\theta_{1}
\end{array}\right]
$$

$\nabla\left(\theta^{T} \theta\right)$ is a vector field
any line passing through the center of the circle

Plotting the regularization term $\theta^{t} \theta$

$$
\theta=\left[\begin{array}{l}
\theta_{0} \\
\theta_{1}
\end{array}\right] \quad \Rightarrow \theta^{t} \theta=\theta_{0}^{2}+\theta_{1}^{2}
$$

3D view

Top view
$E(\theta)=\frac{1}{N}(\mathrm{z} \theta-y)^{T}(\mathrm{z} \theta-y)$
Subject to $\theta^{t} \theta \leq C$
$\theta_{\text {lin }}$ is the solution (min absolute)

Find a solution in $\theta^{t} \theta$ that minimizes $E(\theta)$

Constraint and Loss

Considering the below $E(\theta)$ and C what is a θ candidate here?

∇E : the gradient (rate) in objective function which minimizes error (orthogonal to ellipse. Changes happen in orthogonal direction)

What is the orthogonal direction on the other surface?

It is just θ, a line passing through center of the circle

Applying a constrain $\theta^{t} \theta$, where the best solution happens?

On the boundary of the circle, as it is the closest one to the minimum absolute

$$
\theta^{t} \theta=\text { Constraint }=C
$$

surface?
?

Considering the below $E(\theta)$ and C what is the bew θ solution here?

$\nabla E(\theta) \propto-\theta$

$$
\nabla E(\theta)=-2 \frac{\lambda}{N} \theta
$$

$$
\nabla E(\theta)+2 \frac{\lambda}{N} \theta=0
$$

Let's do integration
Minimize $E(\theta)+\frac{\lambda}{N} \theta^{T} \theta$
$C \uparrow \lambda \downarrow$

Outline

- Overfitting and regularized learning
- Ridge regression
- Lasso regression
- Determining regularization strength

Ridge Regression

- Cost function - squared loss:
$\widetilde{E}(\theta)=\frac{1}{N} \sum_{i=1}^{N}\{\underbrace{f\left(x_{i}, \theta\right)-y_{i}}_{\text {loss function }}\}^{2}+\underbrace{\frac{\lambda_{\|}}{N}\|\theta\|^{2}}_{\text {regularization }} \quad \underbrace{\text { target value }}_{\mathbf{x}_{\mathrm{i}}}$
- Regression function for x (1D):

$$
f(x, \theta)=\theta_{0}+\theta_{1} z_{1}+\theta_{2} z_{2}+\cdots+\theta_{d} z_{d}+\epsilon=z \theta
$$

Solving for the Weights θ

Notation: write the target and regressed values as N-vectors
$\mathbf{y}=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \cdot \\ \cdot \\ y_{N}\end{array}\right) \mathbf{f}=\left(\begin{array}{c}z\left(x_{1}\right) \theta \\ z\left(x_{2}\right) \theta \\ \cdot \\ z\left(x_{n}\right) \theta\end{array}\right)=z \theta=\left[\begin{array}{cccc}1 & z_{1}\left(x_{1}\right) & \ldots & z_{d}\left(x_{1}\right) \\ 1 & z_{1}\left(x_{2}\right) & \ldots & z_{d}\left(x_{2}\right) \\ \cdot & & & \\ \cdot & & \\ 1 & z_{1}\left(x_{n}\right) & \ldots & z_{d}\left(x_{n}\right)\end{array}\right]\left(\begin{array}{c}\theta_{0} \\ \theta_{1} \\ \cdot \\ \cdot \\ \theta_{d}\end{array}\right)$
z is an $N \times \mathrm{D}$ design matrix
e.g. for polynomial regression with basis functions up to x^{2}

$$
z \theta=\left[\begin{array}{ccc}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
\cdot & & \cdot \\
\cdot & & \cdot \dot{2} \\
1 & x_{N} & x_{N}^{2}
\end{array}\right]\left(\begin{array}{l}
\theta_{0} \\
\theta_{1} \\
\theta_{2}
\end{array}\right)
$$

$$
\begin{aligned}
\tilde{E}(\theta) & =\frac{1}{N} \sum_{i=1}^{N}\left\{f\left(x_{i}, \theta\right)-y_{i}\right\}^{2}+\frac{\lambda}{N}\|\theta\|^{2} \\
& =\frac{1}{N} \sum_{i=1}^{N}\left(y_{i}-z_{i} \theta\right)^{2}+\frac{\lambda}{N}\|\theta\|^{2} \\
& =\frac{1}{N}\left(y_{i}-z \theta\right)^{2}+\frac{\lambda}{N}\|\theta\|^{2}
\end{aligned}
$$

Now, compute where derivative w.r.t. θ is zero for minimum

$$
\frac{\tilde{E}(\theta)}{d \theta}=-z^{T}(y-z \theta)+\lambda \theta
$$

Hence

$$
\begin{aligned}
& \left(z^{T} z+\lambda I\right) \theta=z^{T} y \\
& \theta=\left(z^{T} z+\lambda I\right)^{-1} z^{T} y
\end{aligned}
$$

D basis functions, N data points

$$
\begin{array}{rl}
\theta & =\left(z^{T} Z+\lambda I\right)^{-1} z^{T} y \\
\|= & () \quad() \quad \text { assume } \mathrm{N}>\mathrm{D} \\
\mathrm{Dx1} & \mathrm{DxD} \quad \mathrm{DxN} \quad \mathrm{Nx1}
\end{array}
$$

- This shows that there is a unique solution.
- If $\lambda=0$ (no regularization), then

$$
\theta=\left(z^{T} z\right)^{-1} z^{T} y=z^{+} y
$$

where z^{+}is the pseudo-inverse of Z (pinv in Matlab)

- Adding the term λI improves the conditioning of the inverse, since if Z is not full rank, then ($z^{T} Z+\lambda I$) will be (for sufficiently large λ)
- As $\lambda \rightarrow \infty, \theta \rightarrow \frac{1}{\lambda} z^{T} y \rightarrow \mathbf{0}$

Ridge Regression Example

- The red curve is the true function (which is not a polynomial)

$$
\begin{array}{cr}
f(x, \theta)=z \theta & z: x \rightarrow z
\end{array} \quad \mathbb{R} \rightarrow \mathbb{R}^{\mathrm{D}+1}+\begin{gathered}
\theta \text { is a } \mathrm{D}+1 \\
\tilde{E}(\theta)=\frac{1}{N} \sum_{i=1}^{N}\left\{f\left(x_{i}, \theta\right)-y_{i}\right\}^{2}+\frac{\lambda}{N}\|\theta\|^{2}
\end{gathered}
$$

$N=9$ samples, $D=7$

$$
D=3
$$

$$
D=5
$$

least-squares fit

Outline

- Overfitting and regularized learning
- Ridge regression
- Lasso regression \longrightarrow
- Determining regularization strength

Regularized Regression

Minimize with respect to θ

$$
\sum_{i=1}^{N} l(\underbrace{\left.f\left(\mathbf{x}_{i}, \theta\right), y_{i}\right)}_{\text {loss function }}+\underbrace{\lambda R(\theta)}_{\text {regularization }}
$$

- There is a choice of both loss functions and regularization
- So far we have seen - "ridge" regression
- squared loss: $\quad \sum_{i=1}^{N}\left(y_{i}-f\left(x_{i}, \theta\right)\right)^{2}$
- squared regularizer: $\quad \lambda\|\theta\|^{2}$

Now let's look at another regularization choice.

The Lasso Regularization (norm one)

- LASSO = Least Absolute Shrinkage and Selection

Minimize with respect to θ

$$
\sum_{i=1}^{N} l(\underbrace{\left.f\left(\mathbf{x}_{i}, \theta\right), y_{i}\right)}_{\text {loss function }}+\underbrace{\lambda R(\theta)}_{\text {regularization }}
$$

- This is a quadratic optimization problem
- There is a unique solution
- p-Norm definition: $\|\theta\|_{p}=\left(\sum_{j=1}^{d}\left|\theta_{i}\right|^{p}\right)^{\frac{1}{p}}$

Let's say we have two parameters $\left(\theta_{0}\right.$ and $\left.\theta_{1}\right)$

$\theta=\left[\begin{array}{c}\theta_{0} \\ \mathbf{0}\end{array}\right]$

$$
\text { Minimize } E(\theta)=\frac{1}{N}(z w-y)^{T}(z \theta-y)
$$

Subject to $\theta \leq C$

Interesting way for feature selection
$E(\theta)$: which is constant on the surface of the ellipsoid

Outline

- Overfitting and regularized learning
- Ridge regression
- Lasso regression
- Determining regularization strength Ψ

Leave-One-Out Cross Validation

For every $i=1, \ldots, n$:

- train the model on every point except i,
- compute the test error on the held out point.

Average the test errors. $\quad \mathrm{CV}_{(n)}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}^{(-i)}\right)^{2}$
123
।
123
n
123
n
123

K-Fold Cross Validation

Split the data into k subsets or folds.
For every $i=1, \ldots, k$:

- train the model on every fold except the i th fold,
- compute the test error on the i th fold.

Average the test errors.47

Choosing λ Using Validation Dataset

Pick up the lambda with the lowest mean value of rmse calculated by Cross Validation approach

Take-Home Messages

- What is overfitting
- What is regularization
- How does Ridge regression work
- Sparsity properties of Lasso regression
- How to choose the regularization coefficient λ

