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Recap

® Linear regression:
® Y =06X
® MSE



Polynomial regression



Polynomial regression when order not known



Outline

Overfitting and regularized learning <«
Ridge regression
Lasso regression

Determining regularization strength



Regression: Recap

0 1
* Suppose we are given a training set of N observations

(1,...,zN) and (y1,...,yN)

* Regression problem is to estimate y(x) from this data



Regression: Recap

-] P

» Want to fit a polynomial regression model

y=0p+0;x+0,x*+--+0x%+¢

0o 7 = {1,X,X2, ...,xd} € Rd and 9 —_ (90; 911 92: "'Jgd)T

y = z0









Which One Is Better?
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¢ Can we increase the maximal polynomial degree to very large,
such that the curve passes through all training points?

No, this can lead to overfitting!



The Overfitting Problem

—©— Training
It D:9 ' —©— Test
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he training error Is very low, but the error on test set Is large.

® The model captures not only patterns but also noisy nuisances
In the training data.
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The Overfitting Problem

Or

0 e

® In regression, overfitting is often associated with large Weights
(severe oscillation)

® How can we address overfitting?
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Regularization
(smart way to cure overfitting disease )

without regularization with regularization

Put a brake on fitting R

Fit a linear line on sinusoidal with just two data points



Who Is the winner?

g (x): average over all lines

without regularization with regularization

bilas=0.21: var=1.69 bias=0.23; var=0.33



Regularized Learning

Why this term leads to
regularization of parameters

~

L y)
Minimize E(O ZoTo
(6) +

 Cost function — squared loss:

target value
N

EO) == {f,6) -1}’ +1$'\9 2

\ J \ J
Y Y

loss function regularization



Polynomial Model

Want to fit a polynomial regression model

Y =00+ 0:x +0,x* + -+ 0;x% + €

Let’s rewrite it as:

y=00+0,z1 +0,2zp + -+ 04z5 + € =20



Regularizing Is just constraining the weights (0)

For example: let's do a hard constraining
Yy = 00 + 81Z1 + 92Z2 + -+ HdZd

subject to
6, =0 ford > 2

y=00+01Z1+02Z2+0+”'+0




Let’s not penalize 6 in such a harsh way
let’'s cut them some slack

. I, oy
0 = argmingE(0) = EZ(y‘ — 7;0)
i=1

1
Minimize ~ (z6 — )T (20 — y)

Subjectto 8 < C

For simplicity let’s call 6,;,, as weights’ solution for non constrained one
and 6 for the constrained model.



1
E(0) =+ (26 — y)'(z6 —y)

Possible graph for E(0) for different values of 8, and 8,;and given
observation data
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-~ / x | -10.0000 | 7.00000

~- : :
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3D view Top view



6 =

r('e) =

any line passing through the center of the |

0o
0

Gradient of 66

] = 0t 0 = 6¢ + 67

If you imagine standing at a point (8,, 6;),
7(6"76) tells you which direction you should

travel to increase the value of 876 most rapidly.
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7(670) is a vector field

circle
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Plotting the regularization term 66

0
6 = eO] = 0' 6 = 0§ + 67
1

| 3| | z |-631513 | 189.482
2 | 631513 | 189.482 |

Top view



0,5, is the solution (min absolute)

1
E(0) =+ (26 — y)'(z6 —y)

Subject tofte < C E(8): which is constant on the surface of the ellipsoid

Find a solution in 86
that minimizes E(6)



Constraint and Loss



Considering the below E(6) and C
what I1s a 6 candidate here?

VE: the gradient (rate) in objective function

which minimizes error (orthogonal to ellipse. 0t0 = Constraint = C
Changes happen in orthogonal direction)

E(6)
What is the orthogonal direction on the other surface?
Itis just @, a line passing through center of
the circle VE(9)
Applying a constrain 66, where
the best solution happens? 7(60)

On the boundary of the circle, as it is the
closest one to the minimum absolute



Considering the below E(8) and C
what Is the bew 6 solution here?

VE(0) x —0

A
VE(O) = _ZNH

A
VE 2—0 =
(0) + NB 0

- /
hd

Let's do integration

. A
Minimize E(9)+NHTH

CTAl




Outline

Overfitting and regularized learning
Ridge regression <G
Lasso regression

Determining regularization strength

26



Ridge Regression

 Cost function — squared loss:

target value
N

EO)==S {f@.0) ) +1$'|9 2

\ J \ J
Y Y

loss function regularization

» Regression function for x (1D):

f(x,@) — 90 + 91Z1 + 9222 + e+ HdZd + e =260



Solving for the Weights 6

Notation: write the target and regressed values as N-vectors

1 z1(xq1)
1 z1(x3)

[ y1 ) [ z(x1)0
y = y.2 f = Z(X.Z)H =70 =
\uv \ Z(x;,l)H )

Z Is an N x D design matrix

e.g. for polynomial regression with basis functions up to z

VAv,

1 T1 Ib'i ]
1 TN SL’%V

I i z1(Xn)

Zq(X1)
Zq(x32)

1( 6, )

01

Zg(Xn)

I\ ba )

2
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- 1 N
E®) = =3 {f(z,0)—y}*+ —||9 12
N1=1
1 N
= N (yi—zi9)2+NH9H2
_ 1o vz Ao
y Wi —20)" + =10l

Now, compute where derivative w.r.t. 8 is zero for minimum
E )
do

= —zI'(y —z8) + 16

Hence

(z'z+ A6 = z'y

6 = (272 + Al 12T
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D basis functions, N data points
O = (zlz+aD 1zl vy

H = [ ] [ ]H assume N>D

Dx1 DXD DxN NxL1

This shows that there is a unigue solution.
If A = 0 (no regularization), then

0=z tzty=2z%y
where z¥ is the pseudo-inverse of z (pinv in Matlab)

Adding the term AI improves the conditioning of the inverse, since if Z
is not full rank, then (zTz + AI) will be (for sufficiently large \)

As A — oo, § - 1zTy -0
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Ridge Regression Example

ideal fit

* The red curve is the true function (which is 5
not a polynomial)

O Sample points

Ideal fit

» The data points are samples from the
curve with added noise iny.

» There is a choice in both the degree, D, of
the basis functions used, and in the strength
of the regularization

-1.5

0 o1 02 03 04 05 06 07 08 0589 1
X

f(x,8) =z0 Z:X = Z R — rD+1

N
_ 1 A
E©) =~ ) (f0u®) =y + 1617 0 isaD+1

N p— N dimensional vector



1.5

0.5

1.5

N =9 samples,D = 7

O Sample points

Ideal fit
lambda = 100 H
O
(8]
]
o
O
O
0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1

0.5}

O Sample points
Ideal fit
lambda = 1e-010 K

1.5

0.5}

1.5

O Sample points
Ideal fit
lambda = 0.001 }

0.5}

-1.5

O Sample points
Ideal fit
lambda = 1e-015 K

07 08 089 1
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1.5

0.5¢

D=3

least-squares fit

© Sample points
Ideal fit
Least-squares solution

0.1

0.2

0.3

D=5

least-squares fit

1.5

O Sample points
Ideal fit
Least-squares solution

0.1

0.2

0.3

0.4
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Outline

Overfitting and regularized learning
Ridge regression
Lasso regression <

Determining regularization strength
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Regularized Regression

Minimize with respect to 6

N
Y U(f(x4,6),y;) + AR(6)
1=1 1§ y,

\ )
Y Y

loss function regularization
* There is a choice of both loss functions and regularization

* S0 far we have seen — “ridge” regression

N

- squared loss: Y (y; — f(=5, 6))°
i=1

-+ squared regularizer: || 6|

Now let's look at another regularization choice.
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The Lasso Reqgularization (norm one)

* LASSO = Least Absolute Shrinkage and Selection

Minimize with respect to 6

N
» 1(f(x4,6),9;) + AR(6)
1=1 \ y, )

\
Y Y

loss function regularization

* This is a quadratic optimization problem
* There is a unique solution
d P
» p-Norm definition: |lollp=| ¥ | 0i|p)
=1
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Let's say we have two parameters (6, and 6,)

1
Minimize E(0) = N (zw — y)T(ZH —y)

g = |%
“lo Subjectto 6 < C

Interesting Wa)_’ for E(0) : which is constant on the surface of the ellipsoid
feature selection

Sharp edges b,
n




Outline

Overfitting and regularized learning
Ridge regression
Lasso regression

Determining regularization strength <
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Leave-One-Out Cross Validation

Forevery 1 =1,...,n:

» train the model on every point except ¢,

» compute the test error on the held out point.

] — A(—i
Average the test errors. CV(n) = Z(yi — yf ))2
=1
123 k
123 f
123 k

123 n

123 n
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K-Fold Cross Validation

Split the data into k£ subsets or folds.

For every 1 =1,...,k:

» train the model on every fold except the ith fold,

» compute the test error on the ¢th fold.

Average the test errors.

123 n
11765 47
11765 47
11765 47
11765 47

11765 47



error norm

Choosing A Using Validation Dataset

-—--..__.._Il___-|I
— -

.
-
-
________________________

|deal fit

Validation
Training H
Min error

1.5

0.5F

© Sample points
|deal fit
Validation set fit H

61 02 03 04 05 06 07 08 059 1

Pick up the lambda with the lowest
mean value of rmse calculated by
Cross Validation approach
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Take-Home Messages

What is overfitting

What Is regularization

How does Ridge regression work
Sparsity properties of Lasso regression

How to choose the regularization coefficient A
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