

Regularized Linear Regression

Nakul Gopalan Georgia Tech

These slides are adopted based on slides from Andrew Zisserman, Jonathan Taylor, Chao Zhang, Mahdi Roozbahani and Yaser Abu-Mostafa.

Recap

- Linear regression:
- $Y = \theta X \rightarrow Matrix$
- MSE

$$\frac{1}{\sqrt{2}} = \frac{1}{2} \cdot \frac{1}{2}$$

Polynomial regression

$$y = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2^2 + \theta_3 x_3^3 - \cdots$$

$$y = \theta_0 x_0^2 + \theta_1 x_1 + \cdots$$

$$x_n = x^n$$

Polynomial regression when order not known

$$g \propto \chi^{-2}$$

$$g = 0$$

$$\int_{-100}^{100} \chi^{-100} + O_{-99} \chi^{-99} - \cdots - + O_{100} \chi^{-100}$$

$$= 0$$

1 - distance between dieds 9 -> growitation force by them

Outline

Overfitting and regularized learning

- Ridge regression
- Lasso regression
- Determining regularization strength

Regression: Recap

Suppose we are given a training set of N observations

$$(x_1,\ldots,x_N)$$
 and (y_1,\ldots,y_N)

Regression problem is to estimate y(x) from this data

Regression: Recap

Want to fit a polynomial regression model

$$y = \theta_0 + \theta_1 x + \theta_2 x^2 + \dots + \theta_d x^d + \epsilon$$

• $z = \{1, x, x^2, ..., x^d\} \in R^d \text{ and } \theta = (\theta_0, \theta_1, \theta_2, ..., \theta_d)^T$

$$y = z$$

Roal Problem!!

Which One is Better?

 Can we increase the maximal polynomial degree to very large, such that the curve passes through all training points?

No, this can lead to overfitting!

The Overfitting Problem

- The training error is very low, but the error on test set is large.
- The model captures not only patterns but also noisy nuisances in the training data.

The Overfitting Problem

- In regression, overfitting is often associated with large Weights (severe oscillation)
- How can we address overfitting?

Regularization

(smart way to cure overfitting disease)

Fit a linear line on sinusoidal with just two data points

Who is the winner?

 $\bar{g}(x)$: average over all lines

bias=0.21; var=1.69

bias=0.23; var=0.33

Regularized Learning

Why this term leads to regularization of parameters $E(\theta) + \frac{\lambda}{N} \theta^T \theta$

Cost function – squared loss:

$$\widetilde{E}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left\{ f(x_i, \theta) - y_i \right\}^2 + \frac{\lambda}{N} \|\theta\|^2$$

loss function regularization

Polynomial Model

Want to fit a polynomial regression model

$$y = \theta_0 + \theta_1 x + \theta_2 x^2 + \dots + \theta_d x^d + \epsilon$$

Let's rewrite it as:

$$y = \theta_0 + \theta_1 z_1 + \theta_2 z_2 + \dots + \theta_d z_d + \epsilon = \mathbf{z}\theta$$

$$y = \mathbf{\theta}_0 + \theta_1 z_1 + \theta_2 z_2 + \dots + \theta_d z_d + \epsilon = \mathbf{z}\theta$$

Regularizing is just constraining the weights (θ)

For example: let's do a hard constraining

$$y = \theta_0 + \theta_1 z_1 + \theta_2 z_2 + \dots + \theta_d z_d$$

subject to

$$\theta_d = 0 \ for \ d > 2$$

$$y = \theta_0 + \theta_1 z_1 + \theta_2 z_2 + 0 + \dots + 0$$

Let's not penalize θ in such a harsh way let's cut them some slack

$$\theta = argmin_{\theta} E(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y^{i} - z_{i}\theta)^{2}$$

$$Minimize \frac{1}{N} (z\theta - y)^{T} (z\theta - y)$$
Subject to $\theta^{t}\theta \leq C$

$$Morris \text{ form}$$

$$\text{Constant}$$

For simplicity let's call θ_{lin} as weights' solution for non constrained one and θ for the constrained model.

$$E(\theta) = \frac{1}{N} (\mathbf{z}\theta - \mathbf{y})^T (\mathbf{z}\theta - \mathbf{y})$$

Possible graph for $E(\theta)$ for different values of θ_0 and θ_1 and given observation data

3D view

Top view

Gradient of $\theta^t \theta$

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix} \quad \Rightarrow \theta^t \; \theta = \theta_0^2 + \theta_1^2$$

If you imagine standing at a point (θ_0, θ_1) , $\nabla(\theta^T\theta)$ tells you which direction you should travel to increase the value of $\theta^T\theta$ most rapidly.

$$\nabla(\boldsymbol{\theta}^T\boldsymbol{\theta}) = \begin{bmatrix} \frac{\partial}{\partial(\theta_0)}(\boldsymbol{\theta}^T\boldsymbol{\theta}) \\ \frac{\partial}{\partial(\theta_1)}(\boldsymbol{\theta}^T\boldsymbol{\theta}) \end{bmatrix} = \begin{bmatrix} 2\theta_0 \\ 2\theta_1 \end{bmatrix} \approx \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$

 $\nabla(\theta^T\theta)$ is a vector field

any line passing through the center of the circle

Plotting the regularization term $\theta^t \theta$

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix} \quad \Rightarrow \theta^t \; \theta = \theta_0^2 + \theta_1^2 \longrightarrow eq. \text{ for a Cloube}$$

3D view

Top view

Constraint and Loss

gt of L

Considering the below $E(\theta)$ and C what is a θ candidate here?

 ∇E : the gradient (rate) in objective function which minimizes error (orthogonal to ellipse. Changes happen in orthogonal direction)

$$\theta^t \theta = Constraint = C$$

What is the orthogonal direction on the other surface?

It is just θ , a line passing through center of the circle

Applying a constrain $\theta^t \theta$, where the best solution happens?

On the boundary of the circle, as it is the closest one to the minimum absolute

Considering the below $E(\theta)$ and C what is the bew θ solution here?

Outline

- Overfitting and regularized learning
- Ridge regression
- Lasso regression
- Determining regularization strength

Ridge Regression

Cost function – squared loss:

$$\widetilde{E}(\theta \) = \frac{1}{N} \sum_{i=1}^{N} \left\{ f(x_i, \theta \) - y_i \right\}^2 + \frac{\lambda}{N} \|\theta \ \|^2$$

 x_i

loss function

regularization

Regression function for x (1D):

$$f(x,\theta) = \theta_0 + \theta_1 z_1 + \theta_2 z_2 + \dots + \theta_d z_d + \epsilon = \mathbf{z}\theta$$

$$\mathbf{z}_n \mathbf{z} \mathbf{z}_n^{\mathbf{v}}$$

Solving for the Weights θ

Notation: write the target and regressed values as N-vectors

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix} \quad \mathbf{f} = \begin{pmatrix} z(x_1)\theta \\ z(x_2)\theta \\ \vdots \\ z(x_n)\theta \end{pmatrix} = z\theta = \begin{bmatrix} 1 & z_1(x_1) & \dots & z_d(x_1) \\ 1 & z_1(x_2) & \dots & z_d(x_2) \\ \vdots \\ 1 & z_1(x_n) & \dots & z_d(x_n) \end{bmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_d \end{pmatrix}$$

z is an $N \times D$ design matrix

e.g. for polynomial regression with basis functions up to x^2

$$z\theta = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ \vdots & & \vdots \\ 1 & x_N & x_N^2 \end{bmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix}$$

$$\widetilde{E}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \{f(x_i, \theta) - y_i\}^2 + \frac{\lambda}{N} \|\theta\|^2
= \frac{1}{N} \sum_{i=1}^{N} (y_i - z_i \theta)^2 + \frac{\lambda}{N} \|\theta\|^2
= \frac{1}{N} (y_i - z \theta)^2 + \frac{\lambda}{N} \|\theta\|^2
= \frac{1}{N} (y_i - z \theta)^2 + \frac{\lambda}{N} \|\theta\|^2$$

Now, compute where derivative w.r.t. θ is zero for minimum

$$\frac{\tilde{E}(\theta)}{d\theta} = -z^{T}(y - z\theta) + \lambda\theta_{\gamma}$$

Hence

$$(z^Tz + \lambda I)\theta = z^Ty$$

$$\theta = (z^Tz + \lambda I)^{-1}z^Ty$$

$$\theta = (z^Tz + \lambda I)^{-1}z^Ty$$

D basis functions, N data points

$$\theta = (z^T z + \lambda I)^{-1} z^T y$$

$$[] = [] [] assume N>D$$

$$DxD DxN Nx1$$

- This shows that there is a unique solution.
- $\theta = (z^T z)^{-1} z^T y = z^+ y$ • If $\lambda = 0$ (no regularization), then

where z^+ is the pseudo-inverse of z (pinv in Matlab)

- ullet Adding the term λI improves the conditioning of the inverse, since if Zis not full rank, then $(z^Tz + \lambda I)$ will be (for sufficiently large λ)
- As $\lambda \to \infty$, $\theta \to \frac{1}{\lambda} z^T y \to 0$

Ridge Regression Example

- The red curve is the true function (which is not a polynomial)
- The data points are samples from the curve with added noise in y.
- There is a choice in both the degree, D, of the basis functions used, and in the strength of the regularization

$$f(x,\theta) = z\theta \qquad z: x \to z$$

$$\tilde{E}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \{f(x_i,\theta) - y_i\}^2 + \frac{\lambda}{N} \|\theta\|^2$$

 θ is a D+1 dimensional vector

 $\mathbb{R} \to \mathbb{R} D+1$

N = 9 samples, D = 7

Outline

- Overfitting and regularized learning
- Ridge regression
- Lasso regression
- Determining regularization strength

Regularized Regression

Minimize with respect to θ representation const./strough $\sum_{i=1}^{N} l\left(f(\mathbf{x}_i,\theta^i),y_i\right) + \lambda R\left(\theta^i\right)$ loss function regularization

- There is a choice of both loss functions and regularization
- So far we have seen "ridge" regression

• squared loss:
$$\sum_{i=1}^{N} (y_i - f(x_i, \theta))^2$$

• squared regularizer: $\lambda \|\theta\|_{\prime\prime}^2$

Now let's look at another regularization choice.

The Lasso Regularization (norm one)

LASSO = Least Absolute Shrinkage and Selection

Minimize with respect to θ

$$\sum_{i=1}^{N} l\left(f(\mathbf{x}_i, \theta), y_i\right) + \lambda R\left(\theta\right)$$
loss function regularization

- This is a quadratic optimization problem
- There is a unique solution

• p-Norm definition:
$$\|\theta\|_p = \left(\sum_{j=1}^d |\theta_i|^p\right)^{\frac{1}{p}}$$

Let's say we have two parameters (θ_0 and θ_1)

$$\theta = \begin{bmatrix} \theta_0 \\ \mathbf{0} \end{bmatrix}$$
Subject to $\theta \leq C$

Interesting way for feature selection

Sharp edges

$$\theta_{lin} = \frac{1}{N} (\mathbf{z} \mathbf{w} - \mathbf{y})^T (\mathbf{z} \theta - \mathbf{y})$$

$$E(\theta) : \text{ which is constant on the surface of the ellipsoid}$$

$$\theta_{lin} = \frac{1}{N} (\mathbf{z} \mathbf{w} - \mathbf{y})^T (\mathbf{z} \theta - \mathbf{y})$$

$$E(\theta) : \text{ which is constant on the surface of the ellipsoid}$$

Outline

- Overfitting and regularized learning
- Ridge regression
- Lasso regression
- Determining regularization strength

Leave-One-Out Cross Validation

For every $i = 1, \ldots, n$:

- \blacktriangleright train the model on every point except $i_{_{1/\!\!\!\!/}}$
- compute the test error on the held out point.

Average the test errors.

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i^{(-i)})^2$$

K-Fold Cross Validation

Split the data into k subsets or *folds*.

For every $i = 1, \ldots, k$:

- train the model on every fold except the ith fold, 100 data Toints
- compute the test error on the *i*th fold.

Average the test errors.

123	n
91191	
11 76 5	47
11 76 5	47
11 76 5	47
11 76 5	47
11 76 5	47

Choosing \(\lambda\) Using Validation Dataset

Pick up the lambda with the lowest mean value of rmse calculated by Cross Validation approach

Take-Home Messages

- What is overfitting
- What is regularization
- How does Ridge regression work
- Sparsity properties of Lasso regression
- How to choose the regularization coefficient λ