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® Linear regression:

® Y = X ”N\Q}‘V"%

® MSE
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Polynomial regression
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Polynomial regression when order not known
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Outline

Overfitting and regularized learning <
Ridge regression
Lasso regression

Determining regularization strength



Regression: Recap

0 1
* Suppose we are given a training set of N observations

(1,...,zN) and (y1,...,yN)

* Regression problem is to estimate y(x) from this data



Regression: Recap

-] F

» Want to fit a polynomial regression model
y=0g+0;x +0,x*+--+6,x9+¢

9o 7 = {1, X,Xz, ...,Xd} - Rd and 9 — (90; 911' 921 "'Jed)T
}7

\Noce 2
" = z6
y%









Which One Is Better?

from Bishop 4 .
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¢ Can we increase the maximal polynomial degree to very large,
such that the curve passes through all training points?

No, this can lead to overfitting!

T ——




The Overfitting Problem

Or

0

® The model captures not only patterns but also noisy nuisances

In the training data.

—

—©— Training
—6— Test

he training error Is very low, but the error on

test set is large.
—_——
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The Overfitting Problem

0 o

® In regression, overfitting is often associated with Er'Qe Weights
(severe oscillation) T

® How can we address overfitting?
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Regularization
(smart way to cure overfitting disease )

without regularization with regularization
‘5(900()3, 10 Put a hrake on fitting
—— el
ooy 19,000

Fit a linear line on sinusoidal with just two data points



Who iIs the winner?

g (x): average over all lines

without regularization with regularization

bias=0.21; var=1.69 bias=0.23; var=0.33



Regularized Learning

Why this term leads to
regularization of parameters

~

L 2
Minimize E(O Z9To
() + 5,070

 Cost function — squared loss:
target value

N 1 N )\

E6 ) = —Z{f(-’ﬂia@ ) -yt + =16 |°

— N , Y )
Y Y

loss function regularization



Polynomial Model

Want to fit a polynomial regression model

Y =00+ 0:x +0,x* + -+ 0;x% + €

Let’s rewrite it as:

y:30+91Z1+9222+°--+Hdzd+e=z£
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Regularizing Is just constraining the weights (0)

For example: let's do a hard constraining

a—

Yy = 90 + 9121 + 62Z2 + .-+ HdZd

subject to
0, =0 ford>2
—

y =00+ 0121 + 022, + 0+ -+ 0

/

e
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Let’'s not penalize 6 in such a harsh way
let’'s cut them some slack

| I~ )
0 = argmingE(0) = —Z(y‘ — 7;0)
— =

1
Minimize ~ (z6 — y)T(z6 — y)

A
Subjectto 060 < C 29‘ é ;‘
!
Mot Ao’w\ (O%fm*

For simplicity let’s call 6,;,, as weights’ solution for non constrained one
and/@\fwthe_constrained model.




1
E(0) = = (20 - y)'(z6 — y)

Possible graph for E(8) for different values of 8, and 8,;and given
observation data
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3D view Top view



Gradient of 66

—
0
0 = 9"] = 0" 0 = 6§ + 67
1
If you imagine standing at a point (8,, 9,),
7(670) tells you which direction you should
travel to increase the value of 879 most rapidly.
vo7o) = |29 _ 230] ~ [90] N a
- 0 (HTH) 291 61 ;\ LS I I A ~
EIC R SN~
7(670) is a vector field -z T
: o S vy NN S
any line passing through the center of the AASREINN
circle ?/ N
[ \ :
N/ NNNNE




Plotting the regularization term 66

= g"] =0°0=05+07 —~ & éa o e
1 —

x | -10.0000 | 10.0000

'z|-63.1513 | 189.482

Top view



0,5, is the solution (min absolute)

_1 T
ELH) —N(w—y) (z0 —y)

_)SUbjEC'[ to 0t < C E(8): which is constant on the surface of the ellipsoid

N

— TSo (Wve

Find a solution in 8¢6
that minimizes E (6)




Constraint and Loss




Considering the below E(6) and C
what Is a 6 candidate here?

VE': the gradient (rate) in objective function

which minimizes error (orthogonal to ellipse. 0t0 = Constraint = C
Changes happen in orthogonal direction)

E(O)
What is the orthogonal direction on the other surface?
Itis just @, a line passing through center of
the circle VE(9)
Applying a constrain 64, where
the best solution happens? 7 (66)

On the boundary of the circle, as it is the
closest one to the minimum absolute



Considering the below E(6) and C
what Is the bew 6 solution here?

+
v(6'9)- O
VE(O) « -0 < (%'6)

Let's do integration

L ] | | n A
Minimize E(0) +—06076
g N —=
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Outline

Overfitting and regularized learning
Ridge regression <G
Lasso regression

Determining regularization strength
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Ridge Regression
— —

 Cost function — squared loss:
target value

- 1 5\
— Ly — Y — | 2 i
E(6 ) NE:{f( 0)—vi} +N|HH Vi

1=1 '\ J \ J
Y Y

loss function regularization

» Regression function for x (1D):

—_—

f(x,@) — 90 +61Z1 +9222 + "'+9dZd + e = z0
Zar ¥
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Solving for the Weights 6

Notation: write the target and regressed values as N-vectors

[ y1 )

Y2

v

[ z(x)0 )
z(x,)0

\ 2(x,)0

Z iIs an N X D design matrix

1 z(x) 24 (x1)

1 Z1(x7) Zq(x2)

1 21(x) zq (xn)

L+ A R
§ - diws

17 6, )

01

]\ ba )
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e.g. for polynomial regression with basis functions up to z<»

z0
=
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Now, compute where derivative w.r.t. § is zero for minimum

E(9) r
= —Z —z0) + A6,
0 (y — z0) + 16,
Hence "o v@?\,m Vot (om EQ.

r _ T - o
(z'z+A)O =2z"y e 5 :(fﬂlZ'Y
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=
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D basis functions, N data points
O = (z'z+ D)1zl y

(] [ ] assume N>D

_
N

Dx1 DXD DxN Nx1

This shows that there is a unigue solution.

B

If A =0 (no regularization), then L ""’"‘3' Gol-
== -7

T oN-1.Te 4o
0=((z'z)""z'y=z"y

where z1 is the pseudo-inverse of Z (pinv in Matlab)

Adding the term )\I improves the conditioning of the inverse, since if Z
is not full rank, then (zT'z 4 A1) will be (for sufficiently large \)

As A — o0, B = tz'y =0
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Ridge Regression Example

ideal fit

* The red curve is the true function (which is 15
not a polynomial)

© Sample points

Ideal fit

» The data points are samples from the
curve with added noise iny.

» There is a choice in both the degree, D, of
the basis functions used, and in the strength
of the regularization

-1.5

0 o1 02 03 04 05 06 07 08 09 1
X

fro) =20 2% > 2 s pD+1
/y}w v

E() = — Z{f(xlﬁ) i + ||e||2 0 isaD+1

= @ dimensional vector
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1.5

0.5

1.5

N =9 samples, D = 7

O Sample points
— Ideal fit
lambda = 100 H
O
0 -
0
I
o
o
o
pu .
01 02 03 04 05 06 07 08B 09 1
X

0.5}

L] L] Ll L] L L] L) L L L
©  Sample points

—— |deal fit

lambda = 1e-010 §

1.5

0.5}

O Sample points
Ideal fit

1.5 r

0.5}

-1.5 .

L] Ll L] L L L] L] ] L
O Sample points

e |deal fit

lambda = 1e-015

0.7

lambda = 0_0011:‘—5

dac
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1.5

0.5F

D=3

least-squares fit

© Sample points
Ideal fit
Least-squares solution

0 0.1

0.2

0.3

D=5

least-squares fit

1.5

© Sample points
Ideal fit
Least-squares solution
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Outline

Overfitting and regularized learning
Ridge regression
Lasso regression <

Determining regularization strength
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Regularized Regression

Minimize with respect to 6 e ot Shwyﬁ
MSP /v\ﬁ" o loss Ly ﬂofv\wile/
Z l(f(xz,e ); yz) + AR(@)

\
Y Y

loss function regularization

* There is a choice of both loss functions and regularization

* So far we have seen — “ridge” regression

N

- squared loss: Y (y; — f(=5, 6))7
~

» squared regularizer: || 6 ||2//

Now let’s look at another regularization choice.
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The Lasso Regularization (norm one)

* LASSO = Least Absolute Shrinkage and Selection

— D

Minimize with respect to 6

N
Z l(f(xiag)ayi) +)\R(Q)
1=1 \ J )

\

Y Y
loss function regularization
/

* This is a quadratic optimization problem

—

e There Is a unique solution

1
d P
* p-Norm definition: || ollp = Zleilp)
P e ‘=1
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Let's say we have two parameters (6, and 6,)

1
Minimize E(0) = N (zw — y)T(29 - )

O = 90 .
0 Subjectto 8 <C
——OJ‘—Q—ﬁL—b We
Interesting way for E(6) : which is constant on the surface of the ellipsoid

feature selection

Sharp edges




Outline

Overfitting and regularized learning
Ridge regression
Lasso regression

Determining regularization strength <G
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Leave-One-Out Cross Validation

/\

Forevery 1 =1,...,n:

> train the model on every point except ¢,

» compute the test error on the held out point.

Average the test errors. CV(p) = % (y; — gﬁ‘”)““
— i=1
123 N
J
W o1 l'
_s.jTewoJ 123 n
g o123 n s 1 V\nglS
123 f
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K-Fold Cross Validation

Split the data into k subsets or folds.

Forevery 1 =1,...,k:

» train the model on every fo
/

» compute the test error on t

Average the test errors.

d except the ith fold,

ne zt_fu‘old.

\oo Avj(,/ /O\\f\s
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error norm

Choosing A Using Validation Dataset

-mme= |deal fit O Sample points
__________________ Validation o Ideal fit
S P Training | 1} Q Validation set fit |
v  Min eror
'\
“\
4 ~__ \ 0.5
%
L]
A
3 \ > 0

-
-
-
-
''''''
—
-1
-
-
''''''

W___h-_..-_ 1 [ -1.5 1 L 1 L 1 1 1 1 1 1
log 2, X
=

Pick up the lambda with the lowest
mean value of rmse calculated by
Cross Validation approach




Take-Home Messages

What Is overfitting

What Is regularization

How does Ridge regression work
Sparsity properties of Lasso regression

How to choose the regularization coefficient A
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