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Supervised Learning: Overview

Functions F Training data
Jid —) {(zi,yi) € X x V}

LEARNING

PREDICTION




Supervised Learning: Two Types of Tasks

Given: training data {(Xla yl): (XQ: y?): R (Xna yﬂ)}

Learn: a function f(x) : y = f(x)

When y is continuous: When vy is discrete:
1. Regression 2. Classification
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Classification Example 1: Handwritten digit recognition

As a supervised classification problem

Start with training data, e.g. 6000 examples of each digit
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» Can achieve testing error of 0.4%

* One of first commercial and widely used ML systems (for zip codes & checks)



Classification Example 1: Hand-Written Digit Recognition

O /114D Y
G|l 7]2 A

Images are 28 x 28 pixels A classification problem

Represent input image as a vector x € R784
Learn a classifier f(x) such that,
f:x—»{0,1,2,3,4,5,6,7,8,9}



Classification Example 2: Spam Detection
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* This is a classification problem

» Task is to classify email into spam/non-spam
* Data x; is word count

» Requires a learning system as “enemy” keeps innovating



Regression Example 1: Apartment Rent Prediction

» Suppose you are to move to Atlanta

» And you want to find the most
reasonably priced apartment satisfying
your needs:

square-ft., # of bedroom, distance to campus...

A regression
problem

Living area (ft?) # bedroom Rent ($)

150 1
270 1.5 ?




Regression Example 2: Stock Price Prediction
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» Task is to predict stock price at future date

A regression problem



rent

¢ Features:

¢ Living area, distance to campus, # bedroom ...
o Denote as x = (x4, X5, v X )

| o Target:
¢ Rent

Living area o Denoted as y

¢ Training set:
o X = {X{,X,, ., Xy} € R
¢ y — {)’1;)’2; ---;yn}
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Regression: Problem Setup

0 1
* Suppose we are given a training set of N observations

($1,...,$N) and (y17°°°7yN)9mi7y’i c R

* Regression problem is to estimate y(x) from this data
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Linear Regression

Assume Y is a linear function of x (features) plus noise €
y =0p+01x;++04x4+€

where € is an error term of unmodeled effects or random noise

Let & = (0,,6,...,04)", and augment data by one dimension

Y
Then y = x60 + ¢
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http://madrury.github.io/jekyll/update/statistics/2017/08/12/noisy-regression.html
http://madrury.github.io/jekyll/update/statistics/2017/08/12/noisy-regression.html

Least Mean Square Method

» Given N data points, find 8 that minimizes the mean square
error

n
R 1
Training 0 = argmin g L(0) = ﬁz(yi — x;0)*
i=1

: . . dL(0)
o Our usual trick: set gradient to 0 and find parameter Y
dL(6) 2%
EY: =—£leiT()’i—xi9)=0
1=

n

n
L) 2 2
So = Mty ) x =0

=1 1=1

0

14



MSE(6) = argmin ¢ L(8) = - ~ (y — x0)T(y — x6)

Matrix form

{
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1 xil}
1}
vy =1 x5
1 x,{,tl}
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de

td}
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nx1

(d+1)x1



Matrix Version and Optimization

n n
0L(6) 2 2
96 =‘azx?%+ij?’ci@=0
1=

=1

Let’s rewrite it as:

L) 2 - 2 -
YR _E(XL vy X)) (V1) ey Vi) +£(x1, vy X)) (X1, 0, X,)0 =0
Define X = (x¢, ..., x,) and y = (y4, ..., V)
dL(0) 2 2
= ——X'y+—-XTX0 =0
00 n y T n
> 0=X'X)"XTy=X"y X1 is the pseudo-inverse of X

XTxx+ =x"
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0 =X'X)"1XTy=X"y

Xnxd n = instances d = dimension

XTXx = dXn nxd

1

QU
X
QU

Not a big matrix because n > dThis matrix Is invertible most of the
times. If we are VERY unlucky and columns of XX are not linearly
independent (it's not a full rank matrix), then it is not invertible.



Alternative Way to Optimize

The matrix inversion in § = (XTX)~1XTy can be very expensive to
compute

n
aL(e) 2
0 =_sz{(3’i_xi9)

=1

Gradient descent

R _a .,
0t < 0" +szi(yi_xi9)
i=1

Stochastic gradient descent (use one data point at a time)

0 < 0" + By X x| (y; — x;0)
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Methods to optimize

» Stochastic gradient update rule
01 < 0"+ B X x; (y; — x;0)

¢ Pros: on-line, low per-step cost

¢ Cons: coordinate, maybe slow-converging

¢ Gradient descent .

R o« .
PP T
=1

¢ Pros: fast-converging, easy to implement
¢ Cons: need to read all data
» Solve normal equations
0 =X'X)"1xTy
¢ Pros: a single-shot algorithm! Easiest to implement.

» Cons: need to compute inverse (X7X) ™1, expensive, numerical
issues (e.g., matrix is singular ..)
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Linear regression for classification

Ra.W IﬂpUt X = (xO) X1, "-)x255)

Linear model (8,64, ..., 0,:c)

16
Extract useful information

intensity and symmetry x = (X, X1-X3) 16

Sum up all the pixels = intensity
Symmetry = -(difference between flip version)



X = (Xg,%X1,%2) . .
X1 = intensity x, = symmetry

It Is almost linearly separable

symmetry 3

intensity



Linear regression for classification

Binary-valued functions are also real-valued +1 € R

Use linear regression x;0 ~ y, = +1 | = index of a data-point

—1 Xl'g <0
Let’s calculate, sign(x;0) =<0 x;0 =0
1 Xl'g > (0

For one data point (data-point i) with d dimensions (instance):

=00

sign(x;0) — binary transformation



+1

Symmetry

Average Intensity

Not really the best for classification, but t's a good start
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Extension to Higher-Order Regression
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» Want to fit a polynomial regression model

y=0p+0;x +0,x*++6,x9+¢

o z=1{1,x,x% ..,x2} € R* and 8 = (6,04, 05, ---:Qd)T

y = z0



Least Mean Square Still Works the Same

» Given N data points, find @ that minimizes the mean square
error

n

~ 1

6 = argmin g L(0) = EZ(yi — 7;0)7
i=1

» Our usual trick: set gradient to 0 and find parameter

n
AL(O) 2
00 :_EEZ;T(.VL_ZLH)ZO

=1

n

n
0L(0) 2 2
0 =—EEZiTyi+EEZiTZiH=O

1=1 1=1
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Matrix Version of the Gradient

z={1,x,x2% .. x% € R? Y = {V1, V2, e Vn}
dL(0) 2 - 2 .
Y R e z0 =0

> 0=('2)1zZly=2zty

» If we choose a different maximal degree d for the polynomial,
the solution will be different.

27



What is happening in polynomial regression?

—

X = [0,0.5,1, ,95,10] ]: — HO 1+ Hlx 1+ HZXZ

y = [3,3.4875,3.95, ..., 7.98,8] 0o =3;6,=1;6, =05

10

. D RMSE=0




Let's add to the feature space

x; = [0,0.5,1,...,9.5,10] x4 =1[0,0.25,1,...,90.25,100]
y = [3,3.4875,3.95, ..., 7.98,8]
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We are fitting a D-dimensional hyperplane in a D+1

dimensional hyperspace (in above example a 2D plane
in a 3D space). That hyperplane really is 'flat' / 'linear’
In 3D. It can be seen a non-linear regression (a curvy
line) in our 2D example In fact it is a flat surface in 3D.
So the fact that it is mentioned that the model is linear
INn parameters, it iIs shown here.
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Increasing the Maximal Degree

from Bishop
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Which One Is Better?

from Bishop .
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¢ Can we increase the maximal polynomial degree to very large,
such that the curve passes through all training points?

- We will know the answer In next lecture.



Take-Home Messages

® Supervised learning paradigm
® Linear regression and least mean square

® Extension to high-order polynomials
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