Machine Learning CS 4641

Linear Regression

Nakul Gopalan Georgia Tech

These slides are adopted based on slides from Le Song, Chao Zhang, Mahdi Roozbahani, Yaser Abu-Mostafa, Andrew Zisserman.

Announcements

- Chris ran the python introduction last week
- Project sign-ups have begun
- TA hours Start assignments early

What is a line?

 $y = mx + C_n$ $p_1 = (n_1, y_1)$ $p_2 - (n_2, y_2)$ $y = p_2$ $M = \frac{y_i - y_z}{y_i - x_z}$ C = Y | 2:0 r 4:0

Are things linear?

Outline

- Supervised Learning
- Linear Regression
- Extension

Supervised Learning: Two Types of Tasks

Given: training data $\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)\}$

Learn: a function $f(\mathbf{x}) : y = f(\mathbf{x})$

When y is continuous:

When y is discrete:

Class estimation

Classification Example 1: Handwritten digit recognition

- Can achieve testing error of 0.4%
- One of first commercial and widely used ML systems (for zip codes & checks)

Classification Example 1: Hand-Written Digit Recognition

Images are 28 x 28 pixels

A classification problem

Represent input image as a vector $\mathbf{x} \in \mathbb{R}^{784}$ Learn a classifier $f(\mathbf{x})$ such that,

 $f: \mathbf{x} \rightarrow \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Classification Example 2: Spam Detection

Google	in:spam	~ Q	
Gmail -	□ - C More -		
COMPOSE	De	lete all spam messages now (ressages that have been in Spam more than You still have product(s) in your basket - Healthy Living Lifestyle Pre	NOT SPAM
Starred	🗌 🚖 Sherley Rhoda	From Sherley Rhoda	
Sent Mail	Customer Service	Activate your favorite videostreaming service - Your activation code is re-	
Less •	Healthy Living	We have added your shopping credits today - Healthy Living & Co. F	
Important	🗌 🚖 ShiningItd Team	15 inch wifi Android OS tablet pc - SHININGLTD Our Alibaba Shop (
+	🗌 📩 wikiHow Community Team (2)	Congratulations on your article's first Helpful Votel - Congratulations! A I	
		Jesse, NOTICE of FORFEITURE - Do not ignore! - NEVER miss an i	
	□ ☆ Good Fella's	Our team assigned you to receive our new phone - Good Fella's Au:	
	🔲 🚔 Jason Squires	Make 2018 your best year yet - Hi there, Hope you're well, and have h:	
	🗌 🚖 Bunnings	January arrivals - Image Congratulations Jesse Eaton! We have a very	SPAM

A classification problem

- This is a classification problem
- Task is to classify email into spam/non-spam
- Data x_i is word count.
- Requires a learning system as "enemy" keeps innovating

Naky

Regression Example 1: Apartment Rent Prediction

- Suppose you are to move to Atlanta
- And you want to find the most reasonably priced apartment satisfying your needs:

square-ft., # of bedroom, distance to campus ...

Living area (ft ²)	# bedroom	Rent (\$)
230	1 /	600
506	2	1000
433	2	1100
109	1	500
150	1	?
270	1.5	?

A regression problem

Regression Example 2: Stock Price Prediction

- Task is to predict stock price at future date
- A regression problem

- Features:
 - Living area, distance to campus, # bedroom ...
 - Denote as $x = (x_1, x_2, ..., x_d)$
- Target:
 - Rent 👖
 - Denoted as y
- Training set:
 x = {x₁, x₂, ..., x_n} ∈ R^d
 y = {y₁, y₂, ..., y_n}

Regression: Problem Setup

Suppose we are given a training set of N observations

$$(x_1,\ldots,x_N)$$
 and $(y_1,\ldots,y_N), x_i,y_i \in \mathbb{R}$

Regression problem is to estimate y(x) from this data

Outline

- Supervised Learning
- Linear Regression
- Extension

Linear Regression

• Assume y is a linear function of x (features) plus noise ϵ

$$y = \theta_0 + \theta_1 x_1 + \dots + \theta_d x_d + \epsilon$$

- where e is an error term of unmodeled effects or random noise
- Let $\theta = (\theta_0, \theta_1, \dots, \theta_d)^T$, and augment data by one dimension

• Then
$$y = x\theta + \epsilon$$

Least Mean Square Method

• Given n data points, find θ that minimizes the mean square error Training $\frac{\partial L(\theta)}{\partial \theta} =$ Our usual trick: set gradient to 0 and find parameter $\frac{\partial L(\theta)}{\partial \theta} = -\frac{2}{n} \sum_{i=1}^{n} x_i^T (y_i - x_i \theta) = 0$ $\frac{\partial L(\theta)}{\partial \theta} = -\frac{2}{n} \sum_{i=1}^{n} x_i^T y_i + \frac{2}{n} \sum_{i=1}^{n} x_i^T x_i \theta = 0$

Matrix form

Matrix Version and Optimization

$$\frac{\partial L(\theta)}{\partial \theta} = -\frac{2}{n} \sum_{i=1}^{n} x_i^T y_i + \frac{2}{n} \sum_{i=1}^{n} x_i^T x_i \theta = 0$$

$$\text{Red wy}.$$
Let's rewrite it as:
$$\frac{\partial L(\theta)}{\partial \theta} = -\frac{2}{n} (x_1, \dots, x_n)^T (y_1, \dots, y_n) + \frac{2}{n} (x_1, \dots, x_n)^T (x_1, \dots, x_n) \theta = 0$$
Define X = (x_1, \dots, x_n) and y = (y_1, \dots, y_n)

$$\frac{\partial L(\theta)}{\partial \theta} = -\frac{2}{n} X^T y + \frac{2}{n} X^T X \theta = 0$$

$$\frac{\partial L(\theta)}{\partial \theta} = (X^T X)^{-1} X^T y = X^+ y$$

$$X^+ \text{ is the pseudo-inverse of } X$$

$$X^T X X^+ = X^T$$

Not a big matrix because $n \gg d$ This matrix is invertible most of the times. If we are VERY unlucky and columns of $X^T X$ are not linearly independent (it's not a full rank matrix), then it is not invertible.

Alternative Way to Optimize

• The matrix inversion in $\theta = (X^T X)^{-1} X^T y$ can be very expensive to compute

Stochastic gradient descent (use one data point at a time)

$$\hat{\theta}^{t+1} \leftarrow \hat{\theta}^t + \beta_t \times x_i^T (y_i - x_i \theta)$$

Methods to optimize

Stochastic gradient update rule

$$\hat{\theta}^{t+1} \leftarrow \hat{\theta}^t + \beta_t \times x_i^T (y_i - x_i \theta)$$

- Pros: on-line, low per-step cost
- Cons: coordinate, maybe slow-converging
- Gradient descent

$$\hat{\theta}^{t+1} \leftarrow \hat{\theta}^t + \frac{\alpha}{n} \sum_{i=1}^n x_i^T (y_i - x_i \theta)$$

2

- Pros: fast-converging, easy to implement
- Cons: need to read all data
- Solve normal equations

$$\theta = (X^T X)^{-1} X^T y$$

- Pros: a single-shot algorithm! Easiest to implement.
- Cons: need to compute inverse (X^TX)⁻¹, expensive, numerical issues (e.g., matrix is singular ..)

Batch gradient Nexcent

MZZN N tch Gize

Linear regression for classification

-255

Raw Input
$$x = (x_0, x_1, ..., x_{255})$$

Linear model $(\theta_0, \theta_1, ..., \theta_{255})$
Extract useful information
intensity and symmetry $x = (x_0, x_1. x_2)$
Sum up all the pixels = intensity //
Symmetry = -(difference between flip version) [1-9] - [1-9]
X - X

$$x = (x_0, x_1, x_2)$$

$$x_1 = intensity \ x_2 = symmetry$$

It is almost linearly separable

intensity

Linear regression for classification

Binary-valued functions are also real-valued $\pm 1 \in R$

Use linear regression $x_i \theta \approx y_n = \pm 1$ i = index of a data-pointLet's calculate, $sign(x_i\theta) = \begin{cases} -1 & x_i\theta < 0\\ 0 & x_i\theta = 0\\ 1 & x_i\theta > 0 \end{cases}$ For one data point (data-point *i*) with **d** dimensions (instance): x_0 S XZD χ_1 h(x) χ_d $x_i \theta$ $sign(x_i\theta) \rightarrow$ binary transformation

Not really the best for classification, but t's a good start

Outline

- Supervised Learning
- Linear Regression
- Extension

Extension to Higher-Order Regression

Least Mean Square Still Works the Same

Given ∩ data points, find θ that minimizes the mean square error

$$\hat{\theta} = argmin_{\theta} L(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - z_i \theta)^2$$

Our usual trick: set gradient to 0 and find parameter

$$\frac{\partial L(\theta)}{\partial \theta} = -\frac{2}{n} \sum_{i=1}^{n} z_i^T (y_i - z_i \theta) = 0$$
$$\frac{\partial L(\theta)}{\partial \theta} = -\frac{2}{n} \sum_{i=1}^{n} z_i^T y_i + \frac{2}{n} \sum_{i=1}^{n} z_i^T z_i \theta = 0$$

Matrix Version of the Gradient

 $z = \{1, x, x^2, \dots, x^d\} \in \mathbb{R}^d \qquad y = \{y_1, y_2, \dots, y_n\}$

 If we choose a different maximal degree d for the polynomial, the solution will be different.

Poll

Can every non-linear problem be separated by a linear boundary?

Yes <u>non-linear</u> <u>linear</u> <u>problem</u>
No

What is happening in polynomial regression?

Let's add to the feature space

 $x_1 = [0, 0.5, 1, ..., 9.5, 10]$ $x_2^2 = [0, 0.25, 1, ..., 90.25, 100]$ y = [3, 3.4875, 3.95, ..., 7.98, 8]

We are fitting a D-dimensional hyperplane in a D+1 dimensional hyperspace (in above example a 2D plane in a 3D space). That hyperplane really is 'flat' / 'linear' in 3D. It can be seen a non-linear regression (a curvy line) in our 2D example in fact it is a flat surface in 3D. So the fact that it is mentioned that the model is linear in parameters, it is shown here.

Increasing the Maximal Degree

Which One is Better?

- Can we increase the maximal polynomial degree to very large, such that the curve passes through all training points?
 - We will know the answer in next lecture.

Take-Home Messages

- Supervised learning paradigm
- Linear regression and least mean square
- Extension to high-order polynomials