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Uncertainty and Information

Information is processed data whereas knowledge is information that is
modeled to be useful.

You need information to be able to get knowledge

e information #= knowledge
Concerned with abstract possibilities, not their meaning



Uncertainty and Information

25% | Rainy

50% Rainy

75%| Sunny
50%| Sunny

Which day is more uncertain?

How do we quantify uncertainty?

High entropy correlates to high information or the more
uncertain



Information

Let X be a random variable with distribution p(x)

1
[(X) = log(5)






Information

Let X be a random variable with distribution p(x)

[(X) = log( o

Have you heard a picture is worth 1000 words?

Information obtained by random word from a 100,000 word vocabulary:

1 1
I(word) =1 =1 = 16.61 bit
(word) = log (p(x)> o8 (1/100000) -

A 1000 word document from same source:
[(document) = 1000 X I(word) = 16610

A 640*480 pixel, 16-greyscale video picture (each pixel has 16 bits information):

[(Picture) = log( > = 1228800

1/16640*480

A picture is worth (a lot more than) 1000 words!



MOTIVATION: COMPRESSION

» Suppose we observe a sequence of events:

» Coin tosses

» Words in a language
» notes in a song

> etc.

» We want to record the sequence of events in the smallest
possible space.

» In other words we want the shortest representation which
preserves all information.

» Another way to think about this: How much information
does the sequence of events actually contain?



MOTIVATION: COMPRESSION

To be concrete, consider the problem of recording coin tosses in

unary.
/A U |
Approach 1:
H|T
0 |00
00, 00, 00, 00,0

We used 9 characters

Which one has a higher probability: T or H?
Which one should carry more information: T or H?



MOTIVATION: COMPRESSION

To be concrete, consider the problem of recording coin tosses in

unary.
Loy s H
Approach 2:
H ||
00 | O
0,0,0,0,00

We used 6 characters



MOTIVATION: COMPRESSION

» Frequently occuring events should have short encodings

» We see this in english with words such as “a”, “the”,
“and”, etc.

» We want to maximise the information-per-character
» seeing common events provides little information

» seeing uncommon events provides a lot of information
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Example

International Morse Code

1. The ke=ngth of a dat s ans unit.

2. 8 dash s thres unis.
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5. The gpaoe betessen waords ks sessn units.
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Morse Code image from Wikipedia Commons



Information Theory

® Tnformation theory is a mathematical
framework which addresses questions like:

» How much information does a random variable carry
about?

» How efficient is a hypothetical code, given the
statistics of the random variable?

» How much better or worse would another code do?

» Is the information carried by different random
variables complementary or redundant?
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Entropy

» Entropy H(Y) of a random variable Y
K
HY) == ) P(y = k)log, P(y = k)
k=1

o H(Y) is the expected number of bits needed to encode a
randomly drawn value of Y (under most efficient code)

o Information theory:

Most efficient code assigns —log,P(Y = k) bits to encode the message
Y = k, So, expected number of bits to code one randomYY is:

K
) Py = k)log, P(y = k)
k=1

16



1.0

0.0 0.5 1.0

¢ Sisasample of coin flips

» p, is the proportion of heads in §
o p_ isthe proportion of tailsin §
¢ Entropy measure the uncertainty of S

H(S) = —p+logy p+ — p—logy p—

1/



Entropy Computation: An Example

H(S) = —p4+ loga py+ — p—logy p—

head 0
tail 6
head 1

tail 5
head 2
tail 4

P(h)=0/6=0 P(t)=6/6=1
Entropy=-0log0-1log1=-0-0=0

P(h)=1/6 P(t) = 5/6
Entropy = - (1/6) log, (1/6) - (5/6) log, (5/6) = 0.65

P(h) = 2/6 P(t) = 4/6
Entropy = - (2/6) log, (2/6) - (4/6) log, (4/6) = 0.92
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Properties of Entropy

1
H(P) = ) p;-log—
i Ds

. Non-negative: H(P) > 0

. Invariant wrt permutation of its inputs:

H(p1,p2;---,pk) = H(Pr (1), Pr(2)s - - - s Pr(k))

. For any other probability distribution {q1,92,...,q%}:

H(P) = er:'ﬁ--logi < ) pg- Iogi
i Pi i q;

. H(P) <logk, with equality iff p; = 1/k Vi

. T he further P is from uniform, the lower the entropy.
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Joint Entropy

Temperature

cold | mild | hot

. ow 0.1 |04 |01106
huMidity | high |02 |0.1 0.1 |0.4

0.3 |05 |0.2]1.0

e H(T) = H(0.3,0.5,0.2) = 1.48548

e H(M)= H(0.6,0.4) = 0.970951

o H(T) + H(M) = 2.456431

e Joint Entropy: consider the space of (¢, m) events H(T, M) =

Stm P(T = t,M = m) - 109 prp= t,lM:m)

H(0.1,0.4,0.1,0.2,0.1,0.1) = 2.32193

Notice that H(T, M) < H(T) + H(M)
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Conditional Entropy or Average Conditional
Entropy

p(x)
p(x,y)

HIYIX) = ) pOHYVIX =x) = )" p(x,y)log

xeX XeEX,yeY
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https://en.wikipedia.org/wiki/Conditional_entropy

Conditional Entropy proof

H(Y|X) =) p(z)H(Y|X = )

reX
==Y p(z) > pylz) log p(y|z)
reX yey
==Y p(z,y) log p(y|z)
zeX yc)y
= — > p(z,y)log p(y|z)
reX ycy
p(z,y)
=— ) p(=z,y)log
2 EX YEY p(z)




Conditional Entropy

p(x)
p(x,y)

HIYIX) = ) pOH(YIX=x) = ) p(x,y)log

XEX XEX,YyEY

P(T = t|M = m)

cold | mild | hot
low |1/6 |4/6 |[1/6| 1.0
high | 2/4 |1/4 |1/4 | 1.0

Conditional Entropy:
o H(T|M =low) = H(1/6,4/6,1/6) = 1.25163
e H(T|M = high) = H(2/4,1/4,1/4) = 1.5

e Average Conditional Entropy (aka equivocation):
H(T/M) =>mnP(M =m) -HT|M =m) =
0.6 - H(T|M = low) + 0.4 - H(T|M = high) = 1.350978
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https://en.wikipedia.org/wiki/Conditional_entropy

Conditional Entropy

P(M = m|T = t)

cold | mild | hot
low|1/3 |4/5 |1/2
high|2/3 |1/5 [ 1/2
1.0 | 1.0 1.0

Conditional Entropy:

H(M|T = cold) = H(1/3,2/3) = 0.918296
H(M|T = mild) = H(4/5,1/5) = 0.721928
H(M|T = hot) = H(1/2,1/2) = 1.0

Average Conditional Entropy (aka Equivocation):
HM/T)=:P(T=1t)- HM|T =1t) =

0.3- H(M|T = cold) +0.5- HM|T = mild) + 0.2 - H(M|T =
hot) = 0.8364528
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Conditional Entropy

» Conditional entropy H (Y |X) of a random variable Y given X;

Discrete random variables:

p(x;)

HOIXO) = ) pG)H(YIX =x) = ) plxi,ylog

x. .
xeX xeX,yeYy P( 1»3’1)

K
Continuous: H(YlX) = —[ Z P(y — klxi) 10g2 P(y — k) p(xi)dxi
k=1

» Quantify the uncerntainty in Y after seeing feature X;

o H(Y) is the expected number of bits needed to encode a
randomly drawn value of Y

¢ given X;, and
o average over the likelihood of seeing particular value of x;

26



Mutual Information

o Mutual information: quantify the reduction in uncerntainty in
Y after seeing feature X;

I(X;,Y) = H(Y)- H(Y|X;)

o The more the reduction in entropy, the more informative a
feature.

¢ Mutual information is symmetric
o I(X;,Y)=1(,X;) =H(X;) — HX;|Y)

_ K Cny — p(xi,y=k) _
o IY1X) = [T p(xi,y = k) log, 220 dx,

xily =k
o = [EEpCuly = Kp@ = k) log, “HZ=1) gy,

27



Properties of Mutual Information

I(X;Y) = H(X)-H(X/Y)

1 1
— ;P(a:) -log P(z) ;yP(m, v) 109 P(zly)
B i | P(z|y)

= Q:Z,yP( ay) |Og P(CE)

B o P(z,y)

— %P( ,y) - 1og P(z)P(y)

Properties of Average Mutual Information:

e Symmetric
e Non-negative
e Zero iff X,Y independent

28


https://en.wikipedia.org/wiki/Mutual_information#Relation_to_conditional_and_joint_entropy

CE and MI: Visual Illustration

| H(X,Y)

Image Credit: Christopher Olah. 29
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Cross Entropy

Cross Entropy: The expected number of bits when a wrong
distribution Q is assumed while the data actually follows a
distribution P

= — > p(z) logg(z) = H(P) + KL[P][Q]

reX
Other definitions:
1
H(p,q) = Eplli| = Ep log
Q’(wz)
Zp(a:3 ) log
Q(-’l?i



Kullback-Leibler Divergence

Another useful information theoretic quantity measures the difference between two
distributions.

P(s)
QS ZP %8 5s)

1
z: e

Cross entropy

= H(P,Q) — H(P)

KL Divergence is

Excess cost in bits paid by encoding according to () instead of P. a distance
measurement

~KLIPQ) = Y P(s)log 5

S

od function i< Q(s) Q(s) By Jensen Inequality
3oncavte or ZP(S) log P(s) < log Z P(S)p(s) E[g(x)] g(E[X])

convex? $ S

= log Z Q(s) =logl =0 g(x) = log(x)

So KL[P||Q] > 0. Equality iff P = Q When P = Q, KL[P||Q] =0


https://www.probabilitycourse.com/chapter6/6_2_5_jensen's_inequality.php

Take-Home Messages

® Entropy
» A measure for uncertainty
» Why it is defined in this way (optimal coding)
» [ts properties

® Joint Entropy, Conditional Entropy, Mutual Information
» The physical intuitions behind their definitions
» The relationships between them

® Cross Entropy, KL Divergence
» The physical intuitions behind them
» The relationships between entropy, cross-entropy, and KL divergence
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