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Uncertainty and Information

/
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Informatlon IS processed data whereas knowledge is information that is
— —— modeled to be useful.

You need information to be able to get knowledge

e information #= knowledge
Concerned with abstract possibilities, not their meaning



Uncertainty and Information

25%| Rainy
— 50%| Rainy

75%| Sunny
50%| Sunny

Which day is more uncertain?

How do we Wertainty?

High entropy correlates to high information or the more
uncertain




Information

Let X be a random variable with distribution p(x)

1
I(X) = 10%(p(x))






Information

Let X be a random variable with distribution p(x)

[(X) = log( o

Have you heard a picture is worth 1000 words?

"\ —

Information obtained by random word from a 100,000 word vocabulary:

‘q

1 1
I(word) =1 = — 16.61 bit
(word) Og(p(x)> Og(ymoooo) 22 LS

A 1000 word document from same source:
I(document) = 1000 X I(word) = 16610

———

A 640*480 pixel, 16—gr§yscale video picture (each pixel has 16 bits information):

I(Picture) = log(

[

1/166.4,0*4?,0) = 1228800

A picture is worth (a lot more than) 1000 words!



MOTIVATION: COMPRESSION

» Suppose we observe a sequence of events:

» Coin tosses
Words in a language —

>
» notesin asong -
> etc.

» We want to record the sequence of events in the smallest
possible space. — [¥- —

» In other words we want the shortest representation which
preserves all information.

» Another way to think about this: How much information
does the sequence of events actually contain?



MOTIVATION: COMPRESSION

To be concrete, consider the problem of recording coin tosses in

unary.
/A U |
\.
Approach 1:
H|T
0 |00
00, 00, 00, 00,0

We used 9 characters

Which one has a higher probability: T or H?
Which one should carry more information: T or H?



MOTIVATION: COMPRESSION

To be concrete, consider the problem of recording coin tosses in

unary.
LLT.T.H
Approach 2:
H ||
00 | O
0,0,0,0,00
RSk

We used 6 characters

—



MOTIVATION: COMPRESSION

» Frequently occuring events should have short encodings
» We see this in english with words such as “a”, “the”,

(e

“and”, etc. —
/ - - - -
» We want to maximise the infor -ner-character

» seeing common events provides little information

» seeing uncommon events provides a lot of information
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Example

International Morse Code

1. The ke=ngth of a dat s ans unit.

2. 48 dash s thres wnis.
3. The zspace betessn parts aof e same l=tter = one unit.
4. The spaos batwean etters o thres units.
5. The spacs betessn waords s ssysn units.
* I e o mmm
'R Ve s os mm
e NN ® VWe mum
. e Ao e o EEE
Yo e DO BN
‘s B R E

e HEE & &

I EE RN N

. e deo oo o mm

I Seeeee

e INN EEE & ] EENRN

I I ¢ N 'l B BN

e HEE @ 1 N N EE

e e e O nmm IEE NN . e
I 0 e BN S

Morse Code image from Wikipedia Commons



Information Theory

® Information theory is a mathematical
framework which addresses questions like:

» How much information does a random varlable carry
about?

» How efficient is a hypothetical code, given the
statistics of the random variable?

» How much better or worse would another code do?

» Is the information car@by differemmm-
variables complementary or redundant?
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Entropy

¢ Entropy H(lj) of a random variable 1;/ Tw): I?]:( (W'-)>
K 107 PDO)
H(Y) = - Z P(y k) log, P(y = k)
< k=1 (,)(f)))

for G = = (P“'“ T (o) + PO br,
o H(Y) is the expected number of bits needed to encode a “4(2/*“) T
|
\/ >

randomly drawn value of Y (under most efficient code)

¢ Information theory:

Most efficient code assigns —log P(Y = k) bits to encode the message
Y =k, So, expected number of bits to code one random Y is:

ZP@ k) log, P(y = k)

\
i\
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Entropy

1.0

Entropy(S)
o
(%]

/

0.0 0.5 1.0

¢ Sisasample of coin flips

» p, is the proportion of heads in §
o p_ isthe proportion of tailsin §
¢ Entropy measure the uncertainty of S

H(S) = —p+logy p+ — p—logy p—

1/



Entropy Computation: An Example

H(S) = —p4+ loga py+ — p—logy p—

head 0
tail 6
head 1

tail 5
head 2
tail 4

P(h)=0/6=0 P(t)=6/6=1
Entropy=-0log0-1log1=-0-0=0

P(h)=1/6 P(t) = 5/6
Entropy = - (1/6) log, (1/6) - (5/6) log, (5/6) = 0.65

P(h) = 2/6 P(t) = 4/6
Entropy = - (2/6) log, (2/6) - (4/6) log, (4/6) = 0.92

18



Properties of Entropy

1
H(P) = ) p;-log—
i Ds

. Non-negative: H(P) > 0

\

. Invariant wrt permutation of its inputs:
H(p1,p2,---,Pr) = H(Pr (1), Pr(2)s - - - 1 Pr(k))
. For any other probability distribution {q1,92,...,q%}:

1 1
H(P) = ) pj-log— < Y p;-log—
i Db F q;

Vi

. I—:T’) < Iogk with equality iff pz — 1/k V3

. T he further P is from uniform, the lower the entropy.

—_— = —

19
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Joint Entropy

Temperature

cold | mild | hot

. [Tow|01(|04 [01]06
huMidity | high | 0.2 |0.1 |0.1 | 0.4

0.3 |05 |0.2]1.0

e H(T) = H(0.3,0.5,0.2) = 1.48548 ,
L)
e H(M) = H(0.6,0.4) = 0.970951
o H(T)+ H(M) = 2.456431
e Joint Entropy: consider the space of (¢, m) events H(T, M) =

Stm P(T = t,M = m) - 109 prp= t,lM:m)

H(0.1,0.4,0.1,0.2,0.1,0.1) = 2.32193
._/

Notice that H(T, M) < H(T) + H(M)

21



Conditional Entropy or Average Conditional
Entropy

./@‘) p(x)
HWI = ) pOOHTIX =0 = ) plxylog oo

xeX /\r&é\% XEX,yEY

22


https://en.wikipedia.org/wiki/Conditional_entropy

Conditional Entropy proof

H(Y|X) =) p(z)HY|X = )

reX
== _p(®) ) p(ylz) log p(y|z)
rxcX yey
=—> > p(z,y) log p(y|z)
zeX yc)y

=— ) ;r:w(m,,y)lﬂg}'i’(ykﬂ)B(E>
reX,ycy
). T




Conditional Entropy

p(x)
p(x,y)

HIYIX) = ) pOH(YIX=x)= ) p(xy)log

XEX XEX,YyEY ——
=

P(T = t|M = m)

cold | mild | hot
low |1/6 |4/6 |1/6,] 1.0
—+bhigh | 2/4 |1/4 |1/4 | 1.0

Conditional Entropy:
o H(T|M =low) = H(1/6,4/6,1/6) = 1.25163
o H(T|M = high) = H(2/4,1/4,1/4) = 1.5,

e Average Conditional Entropy (aka equivocation):
H(T/M) =>mnP(M =m) -HT|M =m) =
0.6 - H(T|M = low) + 0.4 - H(T|M = high) = 1.350978 /

24


https://en.wikipedia.org/wiki/Conditional_entropy

Conditional Entropy

P(M = m|T = t)

cold | mild | hot
low|1/3 |4/5 |1/2
high|2/3 |1/5 [ 1/2
1.0 | 1.0 1.0

Conditional Entropy:

H(M|T = cold) = H(1/3,2/3) = 0.918296
H(M|T = mild) = H(4/5,1/5) = 0.721928
H(M|T = hot) = H(1/2,1/2) = 1.0

Average Conditional Entropy (aka Equivocation):
HM/T)=:P(T=1t)- HM|T =1t) =

0.3- H(M|T = cold) +0.5- HM|T = mild) + 0.2 - H(M|T =
hot) = 0.8364528

25



Conditional Entropy

° Con/dijc_ignal entropy H(Y|X) of a random variable Y given X;

Discrete random variables:

p(x;)

HOIXO) = ) pG)H(YIX =x) = ) plxi,ylog

x. .
xeX xeX,yeYy P( 1»3’1)

K
comsos. H(YIX) == [ ;P(y = klx) logz POy = k) |p(x))dx

&

» Quantify the uncerntainty in Y after seeing feature X;

o H(Y) is the expected number of bits needed to encode a
randomly drawn value of Y

¢ given X;, and
o average over the likelihood of seeing particular value of x;

26



Poll

Relationship between H(Y) and H(Y[X):
® H(Y) >= H(Y|X) .~ 47
® H(Y) <= H(Y|X)




Mutual Information

» Mutual information: quantify the reduction in uncerntainty in
Y after seeing feature X;

[(X,Y) = H(Y)- H(YIX)

o The more the reduction in entropy, the more informative a
feature.

o Mutual information is symmetric
o I(X;,Y)=1(,X;) = HX;) — HX;[Y)

o 1(YIX) =USEn(x: v = p(xiy=k), _
Yx) =Y ZEp(x;,} k) logzp(xi)p(yj) dx;

xily =k
o = [EEpCuly = Kp@ = k) log, “HZ=1) gy,

28



Properties of Mutual Information

I(X;Y) = H(X)-H(X/Y)

1 1
— ;P(a:) -log P(z) ;yP(m, v) 109 P(zly)
B i | P(z|y)

= Q:Z,yP( ay) |Og P(CE)

B o P(z,y)

— %P( ,y) - 1og P(z)P(y)

Properties of Average Mutual Information:

° Symmetric/
° Non-negative/

o Zero iff X, Y independent/

29


https://en.wikipedia.org/wiki/Mutual_information#Relation_to_conditional_and_joint_entropy

CE and MI: Visual Illustration

| H(X,Y)

Image Credit: Christopher Olah. 30
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Cross Entropy

Cross Entropy: The expected number of bits when a wrong
distribution Q is assumed while the data actually follows a
distribution P

== _p(z) logg(z) = H(P) + KL[P][Q]

zeX ’
Other definitions: ]
1
H(p,q) = Eplli| = Ep log
Q’(wz)
p(x;) log
Z q(arg)

H(p Zp (z) log q(x).

32



Kullback-Leibler Divergence

Another useful information theoretic quantity measures the difference between two
distributions.

(o)
P(s) 7\ VZP(U\O/O
3)|Q(S ZP 8 5 SZa @%&

1
Z e

= H(P,Q) — H(P)

Cross entropy

- KL Divergence is
Excess cost in bits paid by encoding according to () instead of P. a distance
measurement

K —KL[P||Q] = Z P(s)log gg

oa function Q(S)/ S Q(s) Bvaensen Inequali
og function is ZP(s) log < log Z P(s)

concave or P(s) P(s) E [g (x)] < g(E[x])

convex? $ S

= log Z Q(s) =logl =0 g(x) = log(x)

So KL[P||Q] > 0. Equality iff P = Q - When P =g, KL[P||Q] =0


https://www.probabilitycourse.com/chapter6/6_2_5_jensen's_inequality.php

Take-Home Messages

® Entropy
» A measure for uncertainty
» Why it is defined in this way (optimal coding)
» [ts properties

® Joint Entropy, Conditional Entropy, Mutual Information
» The physical intuitions behind their definitions
» The relationships between them

® Cross Entropy, KL Divergence
» The physical intuitions behind them
» The relationships between entropy, cross-entropy, and KL divergence
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