Machine Learning CS 4641

Information Theory

Nakul Gopalan Georgia Tech

These slides are based on slides from Le Song, Roni Rosenfeld, Chao Zhang, Mahdi Roozbahani and Maneesh Sahani.

Outline

- Motivation
- Entropy
- Conditional Entropy and Mutual Information
- Cross-Entropy and KL-Divergence

Information is processed data whereas knowledge is information that is modeled to be useful.

You need information to be able to get knowledge

information ≠ knowledge
 Concerned with abstract possibilities, not their meaning

Uncertainty and Information

Which day is more uncertain?

How do we quantify uncertainty?

High entropy correlates to high information or the more uncertain

Information

Let X be a random variable with distribution p(x)

$$I(X) = \log(\frac{1}{p(x)})$$

Biosed Loin Unbiaged Coin 1(T) Ţ(h) $\tilde{J}(\tau)$ Ĩ, (h) 12 2 100 718 1002 (1/ 1092 (8) $\log_2(8/7)$ $= \log(\alpha)$ 22

Information

Let X be a random variable with distribution p(x)

$$I(X) = \log(\frac{1}{p(x)})$$

Have you heard a picture is worth 1000 words?

Information obtained by random word from a 100,000 word vocabulary:

$$I(word) = \log\left(\frac{1}{p(x)}\right) = \log\left(\frac{1}{\frac{1}{1}}\right) = 16.61 \text{ bits}$$

A 1000 word document from same source:

 $I(document) = 1000 \times I(word) = 16610$

A 640*480 pixel, 16-greyscale video picture (each pixel has 16 bits information): $I(Picture) = \log\left(\frac{1}{1/16^{640*480}}\right) = 1228800 \mu$

A picture is worth (a lot more than) 1000 words!

- Suppose we observe a sequence of events:
 - Coin tosses _____
 - Words in a language —
 - notes in a song _
 - ► etc.
- We want to record the sequence of events in the smallest possible space. $-5 \log c$
- In other words we want the shortest representation which preserves all information.
- Another way to think about this: How much information does the sequence of events actually contain?

To be concrete, consider the problem of recording coin tosses in unary.

T, T, T, T, H

Approach 1:

Т
00

00,00,00,00,0

We used 9 characters

Which one has a higher probability: <u>T</u> or H? Which one should carry more information: T or H?

To be concrete, consider the problem of recording coin tosses in unary.

T, T, T, T, H

Approach 2:

0, 0, 0, 0, 00

We used 6 characters

- Frequently occurring events should have short encodings
- We see this in english with words such as "a", "the", "and", etc.
- We want to maximise the information-per-character
- seeing common events provides little information
- seeing uncommon events provides a lot of information

Example

International Morse Code

- 1. The length of a dot is one unit.
- 2. A dash is three units.
- 3. The space between parts of the same letter is one unit.
- 4. The space between letters is three units.
- 5. The space between words is seven units.

Information Theory

- Information theory is a mathematical framework which addresses questions like:
 - How much information does a random variable carry about?
 - How efficient is a hypothetical code, given the statistics of the random variable?
 - How much better or worse would another code do?
 - Is the information carried by different random variables complementary or redundant?

Claude Shannon

Outline

- Motivation
- Entropy
- Conditional Entropy and Mutual Information
- Cross-Entropy and KL-Divergence

Entropy

 $J(u) = \log(\frac{1}{2}(\frac{1}{2}))$ = $-\log_2(p(u))$ Entropy H(Y) of a random variable f_{k} $H(Y) = -\sum_{k=1}^{K} P(y=k) \log_2 P(y=k)$ $F_{k} = -\left(p(h) \cdot \log_2(p(y)) + p(\tau) \cdot \log_2(p(\tau))\right)$ $F_{k} = -\left(p(h) \cdot \log_2(p(y)) + p(\tau) \cdot \log_2(p(\tau))\right)$ $H(Y) \text{ is the expected number of bits needed to encode a - <math>\left(1 \cdot -1 + 1 \cdot 1\right)$ $H(Y) \text{ is the expected number of bits needed to encode a - <math>\left(1 \cdot -1 + 1 \cdot 1\right)$ $H(Y) \text{ is the expected number of bits needed to encode a - <math>\left(1 \cdot -1 + 1 \cdot 1\right)$ $H(Y) \text{ is the expected number of bits needed to encode a - <math>\left(1 \cdot -1 + 1 \cdot 1\right)$ $H(Y) \text{ is the expected number of bits needed to encode a - <math>\left(1 \cdot -1 + 1 \cdot 1\right)$

Information theory:

Most efficient code assigns $-\log_2 P(Y = k)$ bits to encode the message Y = k, So, expected number of bits to code one random Y is: $-\sum_{k=1}^{K} P(y = k) \log_2 P(y = k)$

- S is a sample of coin flips
- p_+ is the proportion of heads in S
- p_{-} is the proportion of tails in S
- Entropy measure the uncertainty of *S*

$$H(S) \equiv -p_+ \log_2 p_+ - p_- \log_2 p_-$$

Entropy Computation: An Example

$$H(S) \equiv -p_+ \log_2 p_+ - p_- \log_2 p_-$$

head	0
tail	6

P(h) = 0/6 = 0 P(t) = 6/6 = 1Entropy = -0 log 0 - 1 log 1 = -0 - 0 = 0

head	1
tail	5

P(h) = 1/6	P(t) = 5/6	
Entropy = -	$(1/6) \log_2 (1/6) - (5/6) \log_2 (5/6) = 0$.65

head	2
tail	4

P(h) = 2/6 P(t) = 4/6Entropy = $-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$

Properties of Entropy

$$H(P) = \sum_{i} p_i \cdot \log \frac{1}{p_i}$$

- 1. Non-negative: $H(P) \ge 0$
- 2. Invariant wrt permutation of its inputs: $H(p_1, p_2, \dots, p_k) = H(p_{\tau(1)}, p_{\tau(2)}, \dots, p_{\tau(k)})$
- 3. For any *other* probability distribution $\{q_1, q_2, \ldots, q_k\}$:

$$H(P) = \sum_{i} p_i \cdot \log \frac{1}{p_i} < \sum_{i} p_i \cdot \log \frac{1}{q_i}$$

4. $H(P) \leq \log k$, with equality iff $p_i = 1/k \quad \forall i$

5. The further P is from uniform, the lower the entropy.

Outline

- Motivation
 Entropy Constraint
 Momention
- Conditional Entropy and Mutual Information
- Cross-Entropy and KL-Divergence

Joint Entropy

Temperature

		cold	mild	hot	
ام N ۸ : ما : ا	low	0.1	0.4	0.1	0.6
numiaity	high	0.2	0.1	0.1	0.4
		0.3	0.5	0.2	1.0

- $H(T) = H(0.3, 0.5, 0.2) = 1.48548_{//}$
- H(M) = H(0.6, 0.4) = 0.970951
- H(T) + H(M) = 2.456431
- Joint Entropy: consider the space of (t, m) events $H(T, M) = \sum_{t,m} P(T = t, M = m) \cdot \log \frac{1}{P(T = t, M = m)}$ H(0.1, 0.4, 0.1, 0.2, 0.1, 0.1) = 2.32193

Notice that H(T, M) < H(T) + H(M) !!!

Conditional Entropy or Average Conditional Entropy

$$\underline{H}(\underline{Y}|\underline{X}) = \sum_{x \in X} p(x)H(\underline{Y}|X = x) = \sum_{x \in X, y \in Y} p(x,y)\log \frac{p(x)}{p(x,y)}$$

Conditional Entropy proof

$$\begin{split} \mathrm{H}(Y|X) &\equiv \sum_{x \in \mathcal{X}} p(x) \, \mathrm{H}(Y|X=x) \\ &= -\sum_{x \in \mathcal{X}} p(x) \sum_{y \in \mathcal{Y}} p(y|x) \log p(y|x) \\ &= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(y|x) \\ &= -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \log p(y|x) \\ &= -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \log \frac{p(x,y)}{p(x)}. \end{split}$$

Conditional Entropy $H(Y|X) = \sum_{x \in X} p(x)H(Y|X = x) = \sum_{x \in X, y \in Y} p(x, y) \log \frac{p(x)}{p(x, y)}$

P(T=t|M=m)

	cold	mild	hot	
low	1/6	4/6	1/6	1.0
high	2/4	1/4	1/4	1.0

Conditional Entropy:

- H(T|M = low) = H(1/6, 4/6, 1/6) = 1.25163
- $H(T|M = high) = H(2/4, 1/4, 1/4) = 1.5_{//}$
- Average Conditional Entropy (aka equivocation): $H(T/M) = \sum_{m} P(M = m) \cdot H(T|M = m) =$ $0.6 \cdot H(T|M = low) + 0.4 \cdot H(T|M = high) = 1.350978$

Conditional Entropy

$$P(M=m|T=t)$$

	cold	mild	hot
low	1/3	4/5	1/2
high	2/3	1/5	1/2
	1.0	1.0	1.0

Conditional Entropy:

- H(M|T = cold) = H(1/3, 2/3) = 0.918296
- H(M|T = mild) = H(4/5, 1/5) = 0.721928
- H(M|T = hot) = H(1/2, 1/2) = 1.0
- Average Conditional Entropy (aka Equivocation): $H(M/T) = \sum_{t} P(T = t) \cdot H(M|T = t) =$ $0.3 \cdot H(M|T = cold) + 0.5 \cdot H(M|T = mild) + 0.2 \cdot H(M|T = hot) = 0.8364528$

Conditional Entropy

• Conditional entropy H(Y|X) of a random variable Y given X_i

Discrete random variables:

$$H(Y|X) = \sum_{x \in X} p(x_i)H(Y|X = x_i) = \sum_{x \in X, y \in Y} p(x_i, y_i)\log \frac{p(x_i)}{p(x_i, y_i)}$$
Continuous:

$$H(Y|X) = -\int \left(\sum_{k=1}^{K} P(y = k|x_i)\log_2 P(y = k)\right) p(x_i)dx_i$$

- Quantify the uncerntainty in Y after seeing feature X_i
- H(Y) is the expected number of bits needed to encode a randomly drawn value of Y
 - given X_i , and
 - average over the likelihood of seeing particular value of x_i

Poll

Relationship between H(Y) and H(Y|X): • $H(Y) >= H(Y|X) - 30^{-1}$ • H(Y) <= H(Y|X)

Mutual Information

 Mutual information: quantify the reduction in uncerntainty in Y after seeing feature X_i

$$I(X_i, Y) = H(Y) - H(Y|X_i)$$

- The more the reduction in entropy, the more informative a feature.
- Mutual information is symmetric
 - $I(X_i, Y) = I(Y, X_i) = H(X_i) H(X_i|Y)$

•
$$I(Y|X) = \int \sum_{k}^{K} p(x_i, y = k) \log_2 \frac{p(x_i, y = k)_{i}}{p(x_i)p(y = k)} dx_i$$

• =
$$\int \sum_{k}^{K} p(x_i | y = k) p(y = k) \log_2 \frac{p(x_i | y = k)}{p(x_i)} dx_i$$

Properties of Mutual Information

$$I(X;Y) = H(X) - H(X/Y)$$

= $\sum_{x} P(x) \cdot \log \frac{1}{P(x)} - \sum_{x,y} P(x,y) \cdot \log \frac{1}{P(x|y)}$
= $\sum_{x,y} P(x,y) \cdot \log \frac{P(x|y)}{P(x)}$
= $\sum_{x,y} P(x,y) \cdot \log \frac{P(x,y)}{P(x)P(y)}$

Properties of Average Mutual Information:

- Symmetric
- Non-negative
- Zero iff X, Y independent

CE and MI: Visual Illustration

	H(X,Y)	
H(X)		H(Y X)
11(11)		
H(X Y)	H((Y)

H(X)		
H(X Y)	I(X,Y)	H(Y X)
	H((Y)

Image Credit: Christopher Olah.

Outline

- Motivation
- Entropy
- Conditional Entropy and Mutual Information
- Cross-Entropy and KL-Divergence

r " ovent H(H) ~ L.

2 pine sang. no of Gits 2 pine - sang. no of Gits 1 pine - so reposent this Reed & reposent this R-V-

Cross Entropy

Cross Entropy: The expected number of bits when a wrong distribution Q is assumed while the data actually follows a distribution P

$$H(p,q) = -\sum_{x \in \mathcal{X}} p(x) \log q(x) = H(P) + KL[P][Q]$$

Other definitions:

$$egin{aligned} H(p,q) &= \mathrm{E}_p[l_i] = \mathrm{E}_p\left[\lograc{1}{q(x_i)}
ight] \ H(p,q) &= \sum_{x_i} p(x_i)\,\lograc{1}{q(x_i)} \ H(p,q) = -\sum_x p(x)\,\log q(x). \end{aligned}$$

Kullback-Leibler Divergence

Another useful information theoretic quantity measures the difference between two distributions.

$$\begin{aligned} \mathsf{KL}[P(S) \| Q(S)] &= \sum_{s} P(s) \log \frac{P(s)}{Q(s)} \quad \exists \sum_{s} P(s) \log \frac{1}{Q(s)} \quad \exists \sum_{s} P(s) \log \frac{1}{Q(s)} - \mathsf{H}[P] = H(P,Q) - H(P) \\ \underbrace{\sum_{s} P(s) \log \frac{1}{Q(s)}}_{\text{cross entropy}} - \mathsf{KL} \text{ Divergence is} \end{aligned}$$

Excess cost in bits paid by encoding according to Q instead of P.

KL Divergence is a distance measurement

n

log function is concave or convex?

$$-\mathsf{KL}[P||Q] = \sum_{s} P(s) \log \frac{Q(s)}{P(s)}$$

$$P(s) \log \frac{Q(s)}{P(s)} \le \log \sum_{s} P(s) \frac{Q(s)}{P(s)}$$

$$= \log \sum_{s} Q(s) = \log 1 = 0$$
By Jensen Inequality

$$E[g(x)] \le g(E[x])$$

$$g(x) = \log(x)$$

So $\mathbf{KL}[P \| Q] \ge 0$. Equality iff P = Q

When P = Q, KL[P||Q] = 0

Take-Home Messages

Entropy

- A measure for uncertainty
- Why it is defined in this way (optimal coding)
- Its properties
- Joint Entropy, Conditional Entropy, Mutual Information
 - The physical intuitions behind their definitions
 - The relationships between them
- Cross Entropy, KL Divergence
 - The physical intuitions behind them
 - ► The relationships between entropy, cross-entropy, and KL divergence