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Probability

o Asample space S is the set of all possible outcomes of a
conceptual or physical, repeatable experiment. (S can be finite
or infinite.)

¢ E.g., Smay be the set of all possible outcomes of a dice roll: S
(1 2 3 4 5 6)

¢ E.g., Smay be the set of all possible nucleotides of a DNA site: S

(A € G T) f

¢ E.g., S may be the set of all possible time-space positions of an
aircraft on a radar screen.

» An Event A is any subset of S

¢ Seeing "1" or "6" in a dice roll; observing a "G" at a site; UAOO7 in
space-time interval



Three Key Ingredients in Probability Theory

A sample space Is a collection of all possible outcomes

Random variables X represents outcomes in sample space

Probability of a random variable to happen  p(x) = p(X = x)

p(x) =0



Continuous variable
Continuous probability distribution
Probability density function
Density or likelihood value
Temperature (real number)
Gaussian Distribution

Discrete variable
Discrete probability distribution
Probability mass function
Probability value
Coin flip (integer)
Bernoulli distribution

p(x)dx =1

R



Continuous Probability Functions

¢ Examples:
¢ Uniform Density Function:
1
fx(x)= h— g foranSb
0 otherwise

¢ Exponential Density Function:
X

fi,(x) = %e_ﬁ forx=>0

—X
E(x)=1—e# forx >0

¢ Gaussian(Normal) Density Function

i) = e 2
X) = e 20
* V2o




Discrete Probability Functions

¢ Examples:
¢ Bernoulli Distribution:
In Bernoulli, just a single trial is conducted
1—p forx=0
’ {p forx =1

¢ Binomial Distribution: k is number of successes

« P(X = k)=(7)p*(1 —p)"*
n-k is number of failures

(',:) The total number of ways of selection k distinct combinations of n
trials, irrespective of order.
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X = Throw a
dice

Vi=p = tail

Vj=1 = head

Example

X and Y are random variables

N = total number of trials

n;; = Number of occurrences

Y = Flip a coin
X
Xi=1 =1 Xi=2 = Xi=3 = Xi=4 =4 Xi=s =5 Xj=¢ =6 C]
np=3 |ny =4 |\n;=2n;=5|n;=1n;=5| 20
nj=2 |n; =2 \ny=4|n; =2 |n;=4 n;=1| 15
5 6 6 7 5 6 N=35




X

Xie1=1 Xi=2=2 X=3=3 Xj=4 =4 Xi=5 =5 Xj=¢=0 CJ
yj=2 — tall nij =3 nij =4 Tlij =2 Tlij =5 Tlij =1 Tlij =5 20
C; 5 6 6 7 5 6 N=35
Pr(x=4, y=h)
Pr(x=5)
Pr(y=t | x=3)

Joint from conditional

Pr(x=Xi, y =

yi)




Probability: p(X = x;) = —

Joint probability: p(X =x,Y =y;) = )

Conditional probability: p(Y = y;|X = x;) = ij
Ci

Sum rule

p(X = x;) —Zp(X—xl,Y yi) = pX) —Z:P(X Y)

Product rule

Tlij nl-j Ci

p(X =x,Y =y;) = N =N p(Y =y;|X =x)p(X = x)
l

p(X,Y) = p(Y|X)p(X)



Joint Distribution

e Key concept: two or more random variables may interact.
Thus, the probability of one taking on a certain value depends on
which value(s) the others are taking.

e We call this a joint ensemble and write

p(x,y) = prob(X =z and Y = y)

Z

= S - - - " o~
-~ - - - -~ e ol
# - pe

p(x,y,z)
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Marginal Distribution

e We can "sum out” part of a joint distribution to get the marginal
distribution of a subset of variables:

p(z)=> plz,y)
Y

e This is like adding slices of the table together.

V} ,’ _’ p(x,y)

e Another equivalent definition: p(z) = »_, p(z[y)p(y).

14



Conditional Distribution

e If we know that some event has occurred, it changes our belief
about the probability of other events.

e [his is like taking a "slice” through the joint table.

p(z|y) = p(z,y)/p(y)

//\

p(x.ylz)

o - . . i -

=
N

N
AN
\
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Independence & Conditional Independence

e Two variables are independent iff their joint factors:

p(x,y) = p(x)p(y)

p(x.,y) | _
| HEEEEN

- X

p(y)

e Two variables are conditionally independent given a third one if for
all values of the conditioning variable, the resulting slice factors:

p(z,y|z) = p(x|2)ply|z)  Vz

16



Conditional Independence

o Examples:

P(Virus | Drink Beer) = P(Virus)
iff Virusis independent of Drink Beer

P(Flu | Virus;DrinkBeer) = P(Flu|Virus)
iff Fluisindependent of Drink Beer, given Virus

P(Headache | Flu;Virus;DrinkBeer) =
P(Headache |Flu;DrinkBeer)
iff Headache is independent of Virus, given Flu and Drink Beer

Assume the above independence, we obtain:
P(Headache;Flu;Virus;DrinkBeer)
=P(Headache | Flu;Virus;DrinkBeer) P(Flu | Virus;DrinkBeer)
P(Virus | Drink Beer) P(DrinkBeer)
=P(Headache |Flu;DrinkBeer) P(Flu|Virus) P(Virus) P(DrinkBeer)

17
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Bayes’ Rule

» P(X]Y)= Fraction of the worlds in which X is true given that Y is
also true.

» For example:
¢ H="Having a headache”
¢ F=“Coming down with flu”
e P(Headche|Flu) = fraction of flu-inflicted worlds in which you
have a headache. How to calculate?

» Definition:
P(X,Y) B P(Y|X)P(X)

P(Y)  P(Y)
P(X,Y) = P(Y|X)P(X)

P(X|Y) =

Corollary:

This is called Bayes Rule

19



Bayes’ Rule

» P(Headache|Flu) = “HeeZ2ce )
_ p(Flu|Headache)pr(Headache)
- P(Flu)
Other cases:
B P(X|Y)P()
» P(Y]X) = PX|Y)P()+P(X|Y)P(-Y)
B B P(X|Y)P(Y)
» PO =yilX) = 5 b @Y = yora=n
P(X|Y,Z)p(y,2)
o POYIX,Z) = FEEETED =
P(X|Y,Z)pP(v,2)

P(X|Y,Z)p(v,2)+P(X|Y,Z)P(~Y,2)

20
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Mean and Variance

Expectation: The mean value, center of mass, first moment:

(00

Ex[g(X)] = f g ()px(Ddx = p

N-th moment: g(x) = x™
N-th central moment: g(x) = (x — p)"

(0.0

Mean: Ex[X] = [~ xpx(x)dx

o E|laX]| = aE[X]

o Ela + X| = a + E[X]
Variance(Second central moment): Var(x) =
Ex[(X — Ex[X])?] = Ex[X?] — Ex[X]*

o Var(aX) = a?Var(X)

o Var(a + X) = Var(X)

L



For Joint Distributions

» Expectation and Covariance:
o E[X +Y] = E[X] + E[Y]
o cov(X,Y) = E[(X — Ex[X])(Y — Ey(Y)] = E[XY] — E[X]E[Y]
e Var(X +Y) =Var(X) + 2cov(X,Y) + Var(Y)

23
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Gaussian Distribution

, _(x—w)*
» Gaussian Distribution: f(x|lu,0°) = e 207
V2mo?
Probability density function
o T T e e e ey
1.0
- F:DJ 0’220.2,— —
P=0, 0%=1.0, w1
0.8 H=0, 0%=5.0, ==
- P=-2, 0?=0.5, == -
0.6
0.4
0.2
0.0
| | | | | | | | | |




Multivariate Gaussian Distribution

1 1
p(JC“J., Z) — (zn)n/zlzll/z exp{—i(x o ﬂ)TZ_l(x o H')}

» Moment Parameterization y = E(X)
L=Cov(X) =E[X - X —-pn)']

» Mahalanobis Distance A?= (x — p) "2 1(x — p)

» Tons of applications (MoG, FA, PPCA, Kalman filter,...)

26



Properties of Gaussian Distribution

¢ The linear transform of a Gaussian r.v. is a Gaussian. Remember
that no matter how x is distributed

E(AX +b)=AE(X)+0b
Cov(AX + b) = ACov(X)A"
this means that for Gaussian distributed quantities:
X~NWX) > AX+b~N(Au+ b,ATA")

» The sum of two independent Gaussian r.v. is a Gaussian
Y=X1 +X2, X1J_X2 —>uy =ﬂ1 +ﬂ2,zy — 21 +22

» The multiplication of two Gaussian functions is another
Gaussian function (although no longer normalized)

N(a,A)N(b,B) x N(c,C),
whereC = (A~*+B )1, c=CA ta+ CB~1b

28



Central Limit Theorem

Probability mass function of a biased dice ) _
035 Let's say, I am going to get a

sample from this pmf having a
sizeofn =4

S, = {1,1,1,6} = E(S;) = 2.25
0.1 I I SZ — {1,1,3,6} = E(Sz) — 275
"0 I '
1 2 3 4 5 6
X

S =1{1,4,6,6} = E(S,,) = 4.25

According to CLT, it will follow

L 0% s 0’0 a bell curve distribution
L 000°2000%% % % %% 000 (normal distribution)




CLT Definition

® Statement: The central limit theorem (due to Laplace) tells us
that, subject to certain mild conditions, the sum of a set of
random variables, which is of course itself a random variable,
has a distribution that becomes increasingly Gaussian as the
number of terms in the sum increases (Walker, 1969).
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Likelihood, what is it? or Cat or Dog? Do we know?
Let’s find out!



Maximum Likelihood Estimation

e Probability: inferring probabilistic quantities for data given fixed
models (e.g. prob. of events, marginals, conditionals, etc).

e Statistics: inferring a model given fixed data observations
(e.g. clustering, classification, regression).

Main assumption:

Independent and identically distributed random variables
i.i.d

33



Maximum Likelihood Estimation

For Bernoulli (i.e. flip a coin):
Objective function: f(x;; p) = p*i(1 — p)1=% x; € {0,1} or {head, tail}
Lip) =p(X =x,X =x,, X =x3,...., X = xp,)
I.i.d assumption

=pX =x)pX =x3) . p(X = xp) = f(0; x1)f (D5 %2) .. £ (D} %)

L(p) = ﬁf(xi;p) = ﬁpxi(l — p)l-¥i
=1 i=1

L(p) =p*1(1—p)t™ xp*2(1 —p)1™%2 .. x p*n(1 —p)t™n =

p— pz xl(]_ — p)Z(l_xi)



We don't like multiplication, let’s convert it into summation

What's the trick? Take the log

L(p) = p**i(1 — p)>(170
logL(p) = I(p) = log(p) ) x +log(1—p) ) (1-x)
i=1 =1

How to optimize p?

dl(p) — 0 7iﬁL=1xi ?:1(1 — X;) —0

dp p 1-p




