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Probability
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Three Key Ingredients in Probability Theory
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Random variables 𝑋 represents outcomes in sample space

A sample space is a collection of all possible outcomes

Probability of a random variable to happen 𝑝 𝑥 = 𝑝(𝑋 = 𝑥)

𝑝 𝑥 ≥ 0



Continuous variable  
Continuous probability distribution 

Probability density function
Density or likelihood value

Temperature (real number)
Gaussian Distribution

Discrete variable  
Discrete probability distribution 

Probability mass function
Probability value

Coin flip (integer)
Bernoulli distribution



𝑥𝜖𝐴

𝑝 𝑥 = 1

න𝑝(𝑥)𝑑𝑥 = 1
𝑥



Continuous Probability Functions
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Discrete Probability Functions

In Bernoulli, just a single trial is conducted

k is number of successes

n-k is number of failures

𝒏
𝒌

The total number of ways of selection k distinct combinations of n

trials, irrespective of order.
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Example

Y = Flip a coin
X = Throw a 

dice

𝑛𝑖𝑗 = 3 𝑛𝑖𝑗 = 4 𝑛𝑖𝑗 = 2 𝑛𝑖𝑗 = 5 𝑛𝑖𝑗 = 1 𝑛𝑖𝑗 = 5 20

𝑛𝑖𝑗 = 2 𝑛𝑖𝑗 = 2 𝑛𝑖𝑗 = 4 𝑛𝑖𝑗 = 2 𝑛𝑖𝑗 = 4 𝑛𝑖𝑗 = 1 15

5 6 6 7 5 6 N=35

X

Y
𝑦𝑗=1 = ℎ𝑒𝑎𝑑

𝑦𝑗=2 = 𝑡𝑎𝑖𝑙

𝑥𝑖=1 = 1 𝑥𝑖=2 = 2 𝑥𝑖=3 = 3 𝑥𝑖=4 = 4 𝑥𝑖=5 = 5 𝑥𝑖=6 = 6

X and Y are random variables

N = total number of trials

𝐶𝑗

𝐶𝑖

𝒏𝒊𝒋 = Number of occurrences



𝑛𝑖𝑗 = 3 𝑛𝑖𝑗 = 4 𝑛𝑖𝑗 = 2 𝑛𝑖𝑗 = 5 𝑛𝑖𝑗 = 1 𝑛𝑖𝑗 = 5 20

𝑛𝑖𝑗 = 2 𝑛𝑖𝑗 = 2 𝑛𝑖𝑗 = 4 𝑛𝑖𝑗 = 2 𝑛𝑖𝑗 = 4 𝑛𝑖𝑗 = 1 15

5 6 6 7 5 6 N=35

X

Y
𝑦𝑗=1 = ℎ𝑒𝑎𝑑

𝑦𝑗=2 = 𝑡𝑎𝑖𝑙

𝑥𝑖=1 = 1 𝑥𝑖=2 = 2 𝑥𝑖=3 = 3 𝑥𝑖=4 = 4 𝑥𝑖=5 = 5 𝑥𝑖=6 = 6 𝐶𝑗

𝐶𝑖

Pr(x=4, y=h)

Pr(x=5)

Pr(y=t | x=3)

Joint from conditional
Pr(x=xi , y = yi) 



𝑝(𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗) =
𝑛𝑖𝑗

𝑁
Joint probability: 

Probability: 𝑝(𝑋 = 𝑥𝑖) =
𝑐𝑖
𝑁

Sum rule

𝑝 𝑋 = 𝑥𝑖 =

𝑗=1

𝐿

𝑝 𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗 ⇒ 𝑝 𝑋 =

𝑌

𝑃(𝑋, 𝑌)

Product rule

𝑝 𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗 =
𝑛𝑖𝑗

𝑁
=
𝑛𝑖𝑗

𝑐𝑖

𝑐𝑖
𝑁
= 𝑝 𝑌 = 𝑦𝑗 𝑋 = 𝑥𝑖 𝑝(𝑋 = 𝑥𝑖)

𝑝 𝑋, 𝑌 = 𝑝 𝑌 𝑋 𝑝(𝑋)

𝑝(𝑌 = 𝑦𝑗|𝑋 = 𝑥𝑖) =
𝑛𝑖𝑗

𝑐𝑖
Conditional probability: 



Joint Distribution
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Marginal Distribution
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Conditional Distribution
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Independence & Conditional Independence
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Poll

• A virus Kappa is known to cause a flu. And a flu is know to 
cause a headache sometimes. A flu can be caused by multiple 
reasons. A patient shows up with a diagnosis of a flu. We 
know the patient has flu. Does the probability of the patient 
having a headache depend on the virus Kappa now or not?

Options:

1)  Yes, probability of a headache depends on the virus Kappa.

2)  No, probability of a headache is independent of the virus 
Kappa as we know the patient has a flu. 



Conditional Independence
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Bayes’ Rule
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Bayes’ Rule
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Administrative business

• Office hours are live

• Live Q&A parallel to the lectures to TAs can help with
answering questions. Use voting as well so I know what 
needs to be handled here.

• Chris is holding a python tutorial on Thursday at 6 pm

• Project questions answered on Thursday’s lecture by me, 
come one, come all.
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Mean and Variance
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For Joint Distributions
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Gaussian Distribution

𝑓(𝑥|𝜇, 𝜎2) =
1

2𝜋𝜎2
𝑒
−
𝑥−𝜇 2

2𝜎2



Multivariate Gaussian Distribution
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−



Properties of Gaussian Distribution
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Central Limit Theorem

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6

X

Probability mass function of a biased dice
Let’s say, I am going to get a 
sample from this pmf having a 

size of 𝒏 = 𝟒

𝑆1 = 1,1,1,6 ⇒ 𝐸 𝑆1 = 2.25

𝑆2 = 1,1,3,6 ⇒ 𝐸 𝑆2 = 2.75

⋮

𝑆𝑚 = 1,4,6,6 ⇒ 𝐸 𝑆𝑚 = 4.25

3.52.51 4.5 6

According to CLT, it will follow 
a bell curve distribution 

(normal distribution)



CLT Definition

• Statement: The central limit theorem (due to Laplace) tells us 
that, subject to certain mild conditions, the sum of a set of 
random variables, which is of course itself a random variable, 
has a distribution that becomes increasingly Gaussian as the 
number of terms in the sum increases (Walker, 1969). 
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Likelihood, what is it? Biased coin from a 
stranger



Likelihood, what is it? or Cat or Dog? Do we know? 
Let’s find out!



Maximum Likelihood Estimation
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Main assumption:
Independent and identically distributed random variables

i.i.d



Maximum Likelihood Estimation

For Bernoulli (i.e. flip a coin):

Objective function: 𝑓 𝑥𝑖; 𝑝 = 𝑝𝑥𝑖 1 − 𝑝 1−𝑥𝑖 𝑥𝑖 ∈ 0,1 𝑜𝑟 {ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙}

𝐿 𝑝 = 𝑃𝑟(𝑋 = 𝑥1, 𝑋 = 𝑥2, 𝑋 = 𝑥3, … , 𝑋 = 𝑥𝑛)

We want to know what is the most “likely” value for the probability 
of success p given n observations???



Maximum Likelihood Estimation

For Bernoulli (i.e. flip a coin):

Objective function: 𝑓 𝑥𝑖; 𝑝 = 𝑝𝑥𝑖 1 − 𝑝 1−𝑥𝑖 𝑥𝑖 ∈ 0,1 𝑜𝑟 {ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙}

𝐿 𝑝 = 𝑃𝑟(𝑋 = 𝑥1, 𝑋 = 𝑥2, 𝑋 = 𝑥3, … , 𝑋 = 𝑥𝑛)

= 𝑃𝑟 𝑋 = 𝑥1 𝑃𝑟 𝑋 = 𝑥2 …𝑃𝑟 𝑋 = 𝑥𝑛 = 𝑓 𝑝; 𝑥1 𝑓 𝑝; 𝑥2 …𝑓 𝑝; 𝑥𝑛

i.i.d assumption

𝐿 𝑝 =ෑ

𝑖=1

𝑛

𝑓 𝑥𝑖; 𝑝 =ෑ

𝑖=1

𝑛

𝑝𝑥𝑖 1 − 𝑝 1−𝑥𝑖

𝐿 𝑝 = 𝑝𝑥1 1 − 𝑝 1−𝑥1 × 𝑝𝑥2 1 − 𝑝 1−𝑥2 …× 𝑝𝑥𝑛 1 − 𝑝 1−𝑥𝑛 =

= 𝑝σ 𝑥𝑖 1 − 𝑝 σ(1−𝑥𝑖)



We don’t like multiplication, let’s convert it into summation

What’s the trick? Take the log

𝐿 𝑝 = 𝑝σ 𝑥𝑖 1 − 𝑝 σ(1−𝑥𝑖)

𝑙𝑜𝑔𝐿 𝑝 = 𝑙 𝑝 = log 𝑝 

𝑖=1

𝑛

𝑥𝑖 + log 1 − 𝑝 

𝑖=1

𝑛

(1 − 𝑥𝑖)

𝜕𝑙(𝑝)

𝜕𝑝
= 0

σ𝑖=1
𝑛 𝑥𝑖
𝑝

−
σ𝑖=1
𝑛 (1 − 𝑥𝑖)

1 − 𝑝
= 0

𝑝 =
1

𝑛


𝑖=1

𝑛

𝑥𝑖

How to optimize p?


