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Some logistics

Creating team.
Office hours are started from next week.
First quiz out this Thursday.

First assignment out this Thursday (early release).
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Why Linear Algebra?

» Linear algebra provides a way of compactly representing and
operating on sets of linear equations

4x, —5x,=—-13 —2x,+3x,=9
can be written inthe formof Ax = b

[4 —5] b = ’—13\

X d . .
o A€ R""“denotes a matrix with n rows and d columns, where
elements belong to real numbers.

o X E ]Rd denotes a vector with d real entries. By convention an
d dimensional vector is often thought as a matrix with 1 row

and d column.



Example



Linear Algebra Basics

Transpose of a matrix results from flipping the rows and
columns. Given A € R** %, transpose is AT € R%* ™

For each element of the matrix, the transpose can be written

The following properties of the transposes are easily verified
o (AT)T —
o (AB)"= BTAT
o (A+B)'= AT +BT

A square matrix A € RY ™ %is symmetricif A = ATand it s
anti-symmetricif A = — A" .
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Norms

» Norm of a vector ||x|| is informally a measure of the “length”
of a vector

» More formally, a norm is any function f: R% - R that satisfies
o For all x € R?, f(x) = 0 (non-negativity)
¢ f(x) =0is and only if x = 0 (definiteness)
o Forx € R%,t€e R, f(tx) = |t|f (x) (homogeneity)
e Forallx,y € R? flx +y)<flx) + fly) (triangle inequality)

» Common norms used in machine learning are

o {,norm

o llxlly = /2izq %




Norms

e £, norm

d
o [lxlly = Zj=qlxi]

e £, norm
o |lx]lo = max;|x;]

» All norms presented so far are examples of the family of £,
norms, which are parameterized by a real numberp 21

o [Ix]l, = iz1lx;[P)
P

» Norms can be defined for matrices, such as the Frobenius
norm.

o [[AllF = \/27;'1=1 Zg'l=1 Aijz = \/tT(ATA)

10



Vector Norm Examples

vai+ay




Special Matrices

The identity matrix, denoted by | € R**%s a square matrix
with ones on the diagonal and zeros everywhere else

A diagonal matrix is matrix where all non-diagonal matrices are
0. This is typically denoted as D = diag(d,, dy d3,...,d )

Two vectors x, y € R? are orthogonal if x.y = 0. A square

matrix U € R? X 4is orthogonal if all its columns are orthogonal
to each other and are normalized

It follows from orthogonality and normality that
e UTU=1=UUT
o [[Ux]l, = llxIl,
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Multiplications

» The product of two matrices A € R" * dand BE R4 *Pis given
by C€ R"*P, where C;; = YX5-1 Ay By,

» Given two vectors x, y € R?, the term xy! (also x - y) is called
the inner product or dot product of the vectors, and is a real
number given by 2?:1 x;y; . For example,

V1
xy' =[xy X, x3]|V2|= ;3=1 XiYi
V3

» Given two vectorsx € R,y € R", the term xTy is called the
outer product of the vectors: x @ y |



Multiplications

. X1 X1Y1 X1Y2 X1Y3
xQ@Qy=xy =|X|[Y1 Y2 Y3|= |X2V1 X2V2 X3Y3
X 3- X3Y1 X3¥V2 X3Y3l

» The dot product also has a geometrical interpretation, for
vectors in X,y € R? with angle & between them

x -y = |x||y| cosB

which leads to use of dot product for testing orthogonality,
getting the Euclidean norm of a vector, and scalar projections.



Inner Product Properties

The inner product is a measure of correlation between two vectors,
scaled by the norms of the vectors




Inner Product Properties

The inner product is a measure of correlation between two vectors,
scaled by the norms of the vectors




Inner Product Properties

The inner product is a measure of correlation between two vectors,

scaled by the norms of the vectors

A




Example



Matrix multiplication geometric meaning
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Linear Independence and Matrix Rank

» Aset of vectors {x;, x,,...,x,} € R? are said to be (linearly)
independent if no vector can be represented as a linear

combination of the remaining vectors. That is if
d—1

xd = Z ax,
i=1
for some scalar values a, ,, ... € R then we say that the vectors

are linearly dependent; otherwise the vectors are linearly
independent

» The column rank of a matrix A € R"** ¢ is the size of the
largest subset of columns of A that constitute a linearly

independent set. Row rank of a matrix is defined similarly for
rows of a matrix.



Matrix Rank: Examples

What are the ranks for the following matrices?

1 23
A =

2 4 6

102
B=[(210

3 2 1



Geometric meaning



Matrix Inverse

» The inverse of a square matrix A € R* *%is denoted A~ and
is the unique matrix suchthat A7*4 =1 =441

» For some square matrices A~! may not exist, and we say that A
is singular or non-invertible. In order for A to have an inverse,
A must be full rank.

» For non-square matrices the inverse, denoted by A™ ,is given
by AT = (ATA)~'AT called the pseudo inverse
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Matrix Trace

» The trace of a matrix A € R* * % denoted as tr(A), is the sum
of the diagonal elements in the matrix

tr(A) = z?=1 A;;

» The trace has the following properties
o For AE R** % tr(A) = trAT
o ForA,BER**% tr(A + B) = tr(4) + tr(B)
o ForA€ERIXAte R, tr(tAd) = t - tr(A4)

e For A, B, C such that ABC is a square matrix tr(ABC) =
tr(BCA) = tr(CAB)

» The trace of a matrix helps us easily compute norms and
eigenvalues of matrices as we will see later



Matrix Determinant

Definition (Determinant)

The determinant of a square matrix A, denoted by |A|, is defined as

d
det (A) = Z (—1)i+j ay M;;

j=1

where M;; is determinant of matrix A without the row 7 and column j.

Fora2><2matrixA=(




Properties of Matrix Determinant

o |A| = ‘AT
o |AB| = |A||B|

o |A| =0 if and only if A is not invertible
o If Ais invertible, then |[A71| = ﬁ
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Eigenvalues and Eigenvectors

» Given a square matrix A € R4 *dwe say that A € C is an
. d . . .
eigenvalue of A and x € C is an eigenvector if

Ax = Ax, x #0

» Intuitively this means that upon multiplying the matrix A with a
vector x, we get the same vector, but scaled by a parameter 4

» Geometrically, we are transforming the matrix A from its
original orthonormal basis/co-ordinates to a new set of
orthonormal basis x with magnitude as 4



Computing Eigenvalues and Eigenvectors

» We can rewrite the original equation in the following manner
Ax = Ax, x #0
= (A—Al)x =0, x + 0

» This is only possible if (A — AI) is singular, thatis |[(4A —AI) | =
0.

» Thus, eigenvalues and eigenvectors can be computed.
o Compute the determinantof A — Al.
» This results in a polynomial of degree d.
¢ Find the roots of the polynomial by equating it to zero.
o The d roots are the d eigenvalues of A. They make A — Al singular.
o For each eigenvalue 4, solve (A — AI) x to find an eigenvector x



Eigenvalue Example

Eigenvalues
1 2| A=-5
A= A
3 -4 Ay, =2

Determine eigenvectors: AX = AX
X, +2x, = Ax, (1-A)x, +2x, =0
—
3x, —4x, = Ax, 3x, -(4+A)x, =0

Eigenvector for A, = -5

6x +2x, =0 —0.3162 [ 1 |
p— X, = or X, =
3x, +x,=0 - 0.9487 | il
Eigenvector for A, = 2 ) i o
_xl +2x2 —- O 08944 2
= X, = or X, =
3xl —6x2 = () _04472_ _1_

Slide credit: Shubham Kumbhar



Matrix Eigen Decomposition

» All the eigenvectors can be written together as AX = XA
where the columns of X are the eigenvectors of 4, and Ais a
diagonal matrix whose elements are eigenvalues of A

» If the eigenvectors of A are invertible, then A = XAX ™!

» There are several properties of eigenvalues and eigenvectors
o Tr(A) = ¥i1 4,
o |Al = TTi=1 A,
¢ Rank of A is the number of non-zero eigenvalues of A
o If A'is non-singular then 1/4; are the eigenvalues of A1

¢ The eigenvalues of a diagonal matrix are the diagonal elements
of the matrix itself!
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Covariance matrix

. . . ATA
For a dataset A we can define the covariance matrix as C = — for large N
ATA — . . .
and C = ——for small N. A is the matrix A centered around its mean

2.5 2.0 1.5]

MT

_ WO DN
= NN

N A=, W



Covariance matrix

3 2 1 05 0.0

11 2 21 <« =15 00

A=14 3 21787 {5 10

2 1 1 _05 —1.0

A_T/T 1 I 05 —15 15 —0.5_

C = —— 00 00 10 -1.0

N—=1 4-=-1] o5 05 05 —o05
1.7 07 0.0

C=10.7 0.7 0.3

.00.

0.3 0.3.

—0.5

0.5
0.5

—0.5,

- 0.5
—1.5
1.5

—0.5

0.0

0.0
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Correlation matrix

"  Given that the different features may not be on the same order of
magnitude, the covariance matrix can be standardized based on the
standard deviation of the individual features to yield the correlation matrix,
such that

covariance(X,Y)

COrr =
O'xO'y



Correlation matrix

= Back to our example...

COIT =

1.7

1.7
0.7

V1.7+/0.7
0.0

v1.74/0.3 +/0.74/0.3

0.7 0.0
V1.74/0.7 /1.74/0.3
0.7 0.3
0.7 V/0.7/0.3

0.3 0.3
0.3

1.0 0.6 0.0]
0.6 1.0 0.7

100. 0.7 1.0d



Singular Value Decomposition

n: instances
Xnxd d: dimensions |
X is a centered matrix

U,x, = unitary matrix » Ux Ul =1

X=U0xv' Saxa — diagonal matrix

Vixg — unitary matrix -V x VI =1

Upg oo oo Up [ [ 0 0 Vig oo e e Vg
: . . 0 ", 0 . " .
X=| : x| 0 0 Z ind 1%
: 0 0 0
| U U | | O 0 0 ] [Vaa e Vg
U ) vt




Covariance matrix:

XX

Caxd

~_VETUTusvT  vsRvT




According to Eigen-decomposition definition =CV = VA

2

e i . .
A; = = = The eigenvalues of covariance matrix

n

A;: Eigenvalue of C or covariance matrix

;. Singular value of X matrix

So, we can directly calculate eigenvalue of a covariance matrix by
having the singular value of matrix X directly



Geometric Meaning of SVD

Image Credit: Kevin Binz
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